本文报道了一种环保的锂对苯二甲酸/聚乳酸 (Li 2 TP/PLA) 复合细丝的开发,该细丝通过熔融沉积成型 (FDM) 进行 3D 打印后可用作锂离子电池的负极。通过在挤出机内直接引入合成的 Li 2 TP 颗粒和 PLA 聚合物粉末,实现了 3D 可打印细丝的无溶剂配方。通过加入平均 M n ∼ 500 的聚乙二醇二甲醚 (PEGDME500) 作为增塑剂,提高了可打印性,而通过引入炭黑 (CB) 则提高了电性能。彻底讨论了热、电、形态、电化学和可打印性特性。通过利用 3D 打印切片软件功能,提出了一种创新方法来改善 3D 打印电极内的液体电解质浸渍。© 2021 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/abedd4]
星际复杂有机分子 (iCOM) 的形成是天体化学中的热门话题。试图重现观测结果的主要范例之一是假设 iCOM 是在覆盖星际尘埃颗粒的冰幔上由于自由基 - 自由基偶联反应而形成的。我们通过计算量子力学方法研究冰表面上 iCOM 的形成。具体来说,我们研究了涉及 CH 3 + X 体系 (X = NH 2 、CH 3 、HCO、CH 3 O、CH 2 OH) 和 HCO + Y (Y = HCO、CH 3 O、CH 2 OH) 以及 CH 2 OH + CH 2 OH 和 CH 3 O + CH 3 O 体系的偶联和直接氢提取反应。我们利用密度泛函理论计算了两个冰水模型(分别由 33 个和 18 个水分子组成),计算了这些反应的活化能垒以及所有研究的自由基的结合能。然后,我们利用反应活化能、解吸能和扩散能以及通过 Eyring 方程推导的动力学估算了每个反应的效率。我们发现表面上的自由基 - 自由基化学并不像通常假设的那么简单。在某些情况下,直接的氢提取反应可以与自由基 - 自由基偶联竞争,而在其他情况下,它们可能包含较大的活化能。具体而言,我们发现 (i) 乙烷、甲胺和乙二醇是相关自由基 - 自由基反应的唯一可能产物;(ii) 乙二醛、甲酸甲酯、乙醇醛、甲酰胺、二甲醚和乙醇的形成可能与各自的氢提取产物竞争; (iii)乙醛和二甲基过氧化物似乎不太可能是谷物表面产物。
摘要 传统燃气轮机是一种非常成熟的技术,性能改进正变得越来越困难和昂贵。由于各自理想的燃气轮机循环具有更高的热效率,增压燃烧 (PGC) 已成为这方面的一项有前途的技术。当前的工作分析了两种带有增压燃烧的燃气轮机汉弗莱循环布局。一种布局复制了燃气轮机循环的经典布局,而另一种布局通过确保燃烧室在化学计量条件下运行来优化增压燃烧的使用。同时,使用两种不同的燃料(氢气和二甲醚)研究了这两种循环布局,以解释燃烧比热增加的差异及其对循环效率的影响。当前的工作最后尝试对增压燃烧室的最大损失进行基准测试,以实现与焦耳循环的效率平价,对于给定的 PGC 燃烧室增压。研究发现,与传统循环结构相比,采用化学计量燃烧的循环布局可使热效率提高多达 7 个百分点。此外,新布局的热效率对涡轮入口温度的敏感度较低,尤其是在低压缩机压力比的情况下。对两种燃料的研究表明,较大的质量比热增加会带来更高的循环热效率,在选择燃料时应予以考虑。最后,对于给定的燃烧室压力增益,计算了导致与焦耳循环效率平价的最大允许增压室压力损失。对于高于 1500°C 的涡轮入口温度,高于 1.6 的压力增益将允许增压室内至少 20% 的相对压力下降。对于较低的涡轮入口温度,相应的压力增益会变得相当高。
3Rs 减少、再利用、回收 ACM 含石棉材料 AD 厌氧消化 ADB 亚洲开发银行 ASU 空气分离装置 BOOT 建造、拥有、运营、转让 BTEX 苯、甲苯、乙苯和二甲苯 C 碳 CH 4 甲烷 CHP 热电联产 CO 2 二氧化碳 COD 化学需氧量 CSTR 连续搅拌釜式反应器 DBOO 设计-建造-拥有-运营 DME 二甲醚 EEZ 专属经济区 EfW 废物能源 EIA 环境影响评估 EOLT 报废轮胎 FOG 脂肪、油和油脂 FSM 密克罗尼西亚联邦 GHG 温室气体 H 2 氢气 H 2 S 硫化氢 HCFC 氢氯氟烃 HRT 水力停留时间 JPRISM II 日本固体废物管理区域倡议促进技术合作项目第二阶段 MAP 微波辅助热解MEA 多边环境协定 MoU 谅解备忘录 MSW 城市固体废物 N 氮 NOx 氮氧化物 OEM 原始设备制造商 OLR 有机负荷率 PE 聚乙烯 PET 聚对苯二甲酸乙二醇酯 PESTLE 政治、环境、社会、技术、法律和经济 PIC 太平洋岛国 PNG 巴布亚新几内亚 POLP 太平洋垃圾项目 POPs 持久性有机污染物 PPE 个人防护设备 ppm 百万分率 PPP 公私合作伙伴关系 PRIF 太平洋地区基础设施设施 RDF 垃圾衍生燃料 RE 可再生能源 RMI 马绍尔群岛共和国 RNG 可再生天然气
欧洲 LPG 行业致力于最迟在 2050 年实现公路运输的碳中和。LPG 是欧洲第一大替代燃料,凭借其清洁燃烧特性,它迄今为止带来的环境效益比任何其他替代燃料都要大。从油井到车轮,LPG 的碳足迹比汽油低 23% 1 ,而且据观察,与汽油相比,其二氧化碳 (CO2) 和颗粒物排放量明显减少,与柴油相比,其氮氧化物 (NOx) 和颗粒物排放量更低 2 。现在以及 2030 年以后,LPG 可以很容易地被其脱石化版本生物 LPG 所取代,或者越来越多地与可再生二甲醚 (rDME) 混合。生物 LPG 由可再生和有机原料生产,可将 LPG 的碳足迹减少高达 80%,具体取决于所用原料。它在化学上与传统 LPG 相同,具有相同的排放特性,对改善空气质量作出了重大贡献。生物液化石油气可以以任意比例与液化石油气混合,且仍可用于现有基础设施。这意味着分销商和消费者无需更换或升级他们的设备即可转换为可再生替代能源解决方案。同样,rDME 是一种由多种可再生原料(包括废物流和残留物)生产的气体燃料。它在化学上与液化石油气相似,可与液化石油气混合高达 20% 并用于现有车辆 3 。修订汽车和货车二氧化碳标准的提案为确保公路运输的技术中立方法提供了重要机会,并确保所有可行技术(包括液化石油气、生物液化石油气和 rDME)都能在欧盟运输部门经济实惠的脱碳中发挥作用。我们认为,纳入可再生燃料信用制度将减轻修订后的二氧化碳标准条例带来的此类限制。
2024 年现代奴隶制法案声明 本声明根据 2015 年现代奴隶制法案第 54 条作出。它列出了 Calor Gas Ltd(“Calor”)已采取并将继续采取的措施,以确保我们的业务或供应链中不会发生现代奴隶制或人口贩运。Calor 对任何形式的现代奴隶制都采取零容忍态度。我们致力于以道德的方式行事,在所有业务交易中保持诚信和透明。我们努力确保建立有效的系统和控制措施,以防止在业务或我们的供应链中发生任何形式的现代奴隶制。我们的组织 Calor 为英国各地的商业和家庭客户提供液化石油气 (LPG)、Futuria 液化气 (BioLPG) 和 Futuria 二甲醚 (rDME)。液化石油气可以通过便携式气瓶或散装罐供应,存储在客户的财产上。Calor 由荷兰公司 SHV Holdings 全资拥有,仅在英国本土开展业务。 Calor 销售的 LPG、BioLPG 和 rDME 由荷兰母公司或英国炼油厂供应。然而,我们在 Teeside、Mossmorran 和 Grangemouth 的第三方供应点都是北海天然气液化源(即不是炼油厂生产的)。Calor 的财政年度从 1 月到 12 月。我们的业务我们认识到现代奴隶制的最大风险来自那些没有长期就业的人,并与服务提供商密切合作,以确保适当管理这一风险。所有机构员工都可以访问我们的援助计划,Calor 可以全面了解所有机构工人,以减轻任何现代奴隶制的风险。我们与所有服务提供商的关系都会定期审查,并受严格的采购流程和合同的约束。在国家合同中,审查政策和程序与我们自己的政策和程序保持一致,并作为持续绩效管理的一部分不断审查这些政策和程序。员工可以使用“畅所欲言”系统匿名分享担忧。“畅所欲言”是 SHV 及其集团的机密报告服务。报告可以通过电话或在线提交。入站供应链 Calor 定期审查高支出和关键供应商,并在此基础上,认为风险最高的领域是那些在人权问题国家开展国际业务的供应商。为了管理这种风险,我们继续与母公司密切合作,对供应商进行审计并评估现有控制措施的有效性。我们的供应商平台要求所有供应商接受业务合作伙伴行为准则,其中包括有关现代奴隶制工人福利的部分以及我们对更广泛的可持续发展主题的期望。对于那些无法访问该平台的客户,我们将在与他们开展业务之前向他们发送一份副本,以确保我们所有的供应商都接受了这些条款。运输 LPG 和 BioLPG 的租赁船只被确定为另一个风险领域。为了管理这一风险,Calor 确认所有租赁协议均通过我们的母公司安排,以确保所有贸易和进口都符合标准并包括雇佣条款