企划管理部 IoT应用推进部 社会基础设施解决方案本部 金融及企业解决方案本部 网络系统本部 防卫系统本部 IoT平台本部 系统中心 基础技术中心 信息通信本庄工厂 信息通信沼津工厂
3月23日,由Qiyuan Green Power,Shanghai Boonray Intellighent Technology Co.,Ltd。,Top Gear等共同开发的无人电池交换矿业卡车,并配备了由上海Boonray Intellray Intellighent Technology Co.,Ltd.,Ltd.,Ltd。目前,它已在South Cement的矿山中进行了方案终端申请测试。根据现场测试,“电牛”可以将二氧化碳的排放量减少至少260吨,从而节省至少20万卢比的劳动力成本。
摘要摩尔的定律终于接近了最终的物理限制,因为最先进的微处理器现在的晶体管在频道中仅宽14纳米,并且微电子行业已经进入了后期的时代。将需要真正的新颖物理学来通过开发新材料,原理,结构,设备和新型体系结构来扩展它。鉴于硅的成功主要从其高质量的本地氧化物SIO2和现有的广大专业知识和基础设施中受益,因此硅的完全替代很快就不太可能在很快发生。在这次演讲中,我将介绍我们最近对基于硅后的技术的半导体物理学的研究(3)GE孔自旋量子材料的理论设计,以加快量子操作的速度超过GHz。参考文献[1] Ruyue Cao,Qiao-lin Yang,Hui-xiong Deng*,Su-huai Wei*,John Robertson和Jun-Wei Luo*,通过降低原子间键合强度,降低光学声子,自然634,1080(2024)。[2] G. Wang,Z.G。Song*,Jun-Wei Luo*和S.S. Li,物理学。修订版b 105,165308(2022)。[3] J.X.Xiong,S。Guan *,Jun-Wei Luo *和S.S. Li,物理。修订版b 103,085309(2021)。[4] Jun-Wei Luo *,S.S。Li和A. Zunger *,物理。修订版Lett。Lett。119,126401(2017)。 查询:3943 6303119,126401(2017)。查询:3943 6303
硅雪崩光二极管(APD)被广泛用作光子探测器,但是它们也可用于检测具有能量𝐸𝐸100keV的电子。尤其是,近年来对APD的使用来检测中等能量范围(10-100 KEV)的电子,特别是对于空间任务中的应用[1-3],APD耐用性与对磁场对磁场的敏感性相结合,具有吸引人的特征。虽然已经进行了一些研究使用APD来检测低能电荷颗粒[4],但使用APD来检测低(<1 keV)的能量电子是一个较少研究的领域,这是这项工作的主题。本文介绍的结果是在新型UV光检测器(Nanouv)开发的背景下产生的,并具有由垂直分配的碳纳米管制成的光(5-8]。垂直分配的碳纳米管可以使用化学蒸气沉积技术[9]生长至几百μm的长度,结果是获得高度各向异性的材料,并获得了管道方向的理想情况下,具有理想的消失密度[10,11]。由这种材料制成的光电行为可以显着降低照相电子重新吸收的可能性,这是现代紫外线探测器的不良效率的主要原因,因为光电子将直接散发到真空中,并且能够使纳米纤维ex nanotubes exul is the Mommante is pare the tube tube tube ubsum tube ubsum tub tubsum tubsum tubsum tub tub。然后通过施加的电势δ𝑉10kV加速电子,然后由位于真空管另一端的硅APD检测到长达几厘米。在图中可以看到Nanouv检测器概念的示意图1。
这些和其他有吸引力的特点引起了人们对这种技术日益增长的兴趣,包括材料科学的基本方面和控制界面特性的化学方法。纳米材料合成方法和纳米制造技术的最新进展为具有极高界面面积和极小尺寸的化学传感器创造了机会,分别可以提高灵敏度和响应时间。以前的报告描述了独特的传感器类别,它们利用各种类型的纳米材料和设备架构进行有针对性的应用,活性材料包括有机半导体[3,4]、无机薄膜和纳米线[5–9]、碳纳米管[10]、石墨烯[11]和过渡金属二硫代化合物[12]。在所研究的广泛材料中,单晶硅及其衍生物尤其令人感兴趣,因为其具有优异、可重复和良好控制的电子特性,可实现卓越的性能和节能运行,并与互补金属氧化物半导体 (CMOS) 技术兼容,用于集成多路复用和信号处理。各种研究都表明了此类化学传感平台的用途,重点是制备、组装、界面工程、电气性能和应用。与其他纳米材料(例如石墨烯、过渡金属二硫属化物、黑磷)相比,这些纳米材料通常包含一系列不受控制的活性位点(例如空位、晶粒边界和缺陷),对基面传感产生不利影响,而现代方法可以常规形成单晶硅,质量优异,成本低,面积大,结构和材料特性近乎完美。[13] 受控生长和/或光刻
III-V 半导体与硅外延杂化过程中的晶体相控制 Marta Rio Calvo、Jean-Baptiste Rodriguez *、Charles Cornet、Laurent Cerutti、Michel Ramonda、Achim Trampert、Gilles Patriarche 和 Éric Tournié * Dr. M. Rio Calvo、Dr. J.-B.罗德里格斯、 L. Cerutti 博士、 Pr. É. Tournié IES,蒙彼利埃大学,法国国家科学研究院,F- 34000 蒙彼利埃,法国 电子邮箱:jean-baptiste.rodriguez@umontpellier.fr , eric.tournie@umontpellier.fr Pr. C. Cornet 雷恩大学,雷恩国立应用科学学院,法国国家科学研究院,FOTON 研究所 – UMR 6082,F-35000 雷恩,法国 Dr. M. Ramonda CTM,蒙彼利埃大学,F- 34000 蒙彼利埃,法国 Dr. A. Trampert Paul-Drude-Institut für Festocorporelektronik,Leibniz-Institut im Forschungsverbund Berlin eV,Hausvogteiplatz 5-7,10117,柏林,德国 Dr. G. Patriarche 巴黎-萨克雷大学,法国国家科学研究院,纳米科学与技术中心纳米技术,91120,帕莱索,法国 关键词:外延生长,反相域,单片集成,III-V 半导体,硅衬底
Vayu Aerospace & Defence Review 是最近在勒克瑙举行的 DefExpo 2020 的官方媒体合作伙伴,并在展会前三天出版和分发了展会日报。这篇综合评论记录了总理纳伦德拉·莫迪、国防部长拉杰纳特·辛格和北方邦首席部长 Yogi Adityanath 出席展会的亮点和政策声明。HAL Dornier 228 轻型运输机在 DefExpo 2020 期间占据了重要地位,开通了连接勒克瑙和北方邦城市的航空服务,在 HAL 展馆展示了新一代变体,并向出口客户推广了该型号。Vayu 对印度和国际各公司的采访也收录在本专题中,还报道了在会场外组织的会议。