摘要在先前的研究中,使用遗传筛选探测来鉴定牛胰腺胰蛋白酶抑制剂的变体,该变异物可以折叠成活性构象,但在存在二硫代醇(DTT)的情况下,它们比野生型蛋白的差异要快得多。现在已经研究了这些DTT敏感变体中有30种的机制。在存在DTT的情况下,某些氨基酸替代品引起快速失活,因为天然蛋白的三个二硫化物的降低速度比野生型蛋白快300倍,从而完全展开。其他取代并不能大大提高完全降低和展开的速度,而是导致非活性的两硫化物物种的积累。在蛋白质的三维结构中,DTT敏感氨基酸替代的位置与变体被灭活的机制之间存在显着相关性。au在野生型蛋白的展开过程中最缓慢地减少的两种二硫化物的附近,而其他类的取代都位于蛋白质的另一端,靠近trypsin结合位点。这些结果表明,天然牛胰腺胰蛋白酶抑制剂的动力学稳定性及其作为蛋白酶抑制剂发挥作用的能力在很大程度上受到折叠蛋白具有区别区域的残基的影响。
我们回顾了半导体纳米结构中热传输的实验和理论结果(多层薄膜,核/壳和分段纳米线),单层和几层石墨烯,己酮硝化氢,二甲硝基硼,钼二硫化物和黑磷。讨论了用于优化电力和热电导的声子工程的不同可能性。揭示了声子能光谱修饰在半导体纳米结构中热导率中的作用。分析了石墨烯和相关的二维(2D)材料对温度,薄片尺寸,缺陷浓度,边缘粗糙度和应变的依赖性。
粘液是一种动态生物水凝胶,主要由糖蛋白粘蛋白组成,具有独特的生物物理特性,并形成保护细胞免受多种病毒侵害的屏障。在这里,这项工作开发了一种基于聚甘油硫酸盐的树枝状粘蛋白启发共聚物 (MICP-1),其中约 10% 的活性二硫化物重复单元作为交联位点。MICP-1 的低温电子显微镜 (Cryo-EM) 分析揭示了细长的单链纤维形态。MICP-1 对许多病毒表现出潜在的抑制活性,例如单纯疱疹病毒 1 (HSV-1) 和 SARS-CoV-2(包括 Delta 和 Omicron 等变体)。MICP-1 使用线性和支链聚乙二醇硫醇 (PEG-thiol) 作为交联剂,生产出具有与健康人痰液相似的粘弹性能和可调节微结构的水凝胶。使用单粒子跟踪微流变学、电子顺磁共振 (EPR) 和低温扫描电子显微镜 (Cryo-SEM) 来表征网络结构。合成的水凝胶表现出自修复特性,以及可通过还原调节的粘弹性能。使用 transwell 测定法来研究水凝胶对 HSV-1 病毒感染的保护特性。活细胞显微镜证实,由于网络形态和阴离子多价效应,这些水凝胶可以通过捕获病毒来保护底层细胞免受感染。总体而言,这种新型粘蛋白共聚物可生成数克级的粘液模拟水凝胶。这些水凝胶可用作富含二硫化物的气道粘液研究的模型,也可用作生物材料。
硫氧还蛋白还原酶(TRXR)是含硒的吡啶核苷酸 - 二硫键氧化酶,以及与维持细胞氧化还原稳态有关的抗氧化剂硫氧还蛋白系统的一部分。1-3局部位于细胞质的TRXR:TRXR1的三种同工型,TRXR2和TRXR3位于线粒体。4所有TRXR同工型都催化了NADPH依赖性的氧化TRX和其他氧化蛋白二硫化物底物的还原,以及硒酸盐脂质氢过氧化物,维生素K和过氧化氢。1,2,4-7 TRXRS调节了几种氧化还原敏感的生物学过程,包括凋亡和细胞生长,增殖和生存,并与癌症,神经退行性疾病,慢性炎症性疾病,自身免疫性疾病和寄生虫的病理有关。4,8-10
006,结合 TOF-SIMS 和原位 AFM 表征二维过渡金属二硫化物层 Rita Tilmann 1 , Stefan Heiserer 2 , Valentina Spampinato 1,3 , Yuanyuan Shi 1,4 , Jill Serron 1 , Albert Minj 1 , Benjamin Groven 1 , Georg S. Duesberg 2 , Thomas Hantschel 1 , Paul AW van der Heide 1 和 Alexis Franquet 1 1 IMEC, Kapeldreef 75, 3001 Leuven, 比利时 2 慕尼黑联邦国防军大学和集成传感器系统中心 (SENS), 物理研究所, EIT2, Neubiberg, 德国 3 卡塔尼亚大学, Dipartimento di Scienze Chimiche, Viale A. Doria 6,意大利卡塔尼亚 4 学校中国科学技术大学微电子学院,合肥,中国
Xue Liu 1 , Jiajie Pei 1, 2 , Zehua Hu 1 , Weijie Zhao 1 , Sheng Liu 1 , Mohamed-Raouf Amara 1 , Kenji Watanabe 3 , Takashi Taniguchi 4 , Han Zhang 2 , Qihua Xiong 1, 5 * 1 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological大学,新加坡637371,新加坡。2 2, 伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。2, 伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。通过使用微拉曼和光致发光光谱的组合,我们证明了调制起源于同时操纵电荷和/或在每个两个相邻层之间的能量转移。关键字:2D材料,范德华异质结构,拉曼和光致发光光谱,层间电荷和能量传递,带工程
二维材料由于其超薄的厚度和超高的表面积与体积比而拥有奇特的物理和化学特性。单层过渡金属二硫化物 (TMDCs) 半导体表现出可调的光致发光 (PL),可以通过应变和掺杂等外部扰动来操纵。例如,单层 MoS 2 拥有应变可调的能带结构,表现出可用于光伏 [1] 的宽带光吸收和可用于量子信息 [2] 应用的有前途的单光子发射。单层 MoS 2 还表现出由化学 [3] 或静电掺杂 [4] 引起的接近 1 的 PL 量子产率,从而可以开发高效的发光二极管 [5] 或激光器 [6]。为了探测外部扰动,拉曼光谱是一种强大且非破坏性的工具,可以定量确定应变和掺杂对 MoS 2 的影响。尽管应变和掺杂对
植物非特异性脂质转移蛋白(NSLTPS)通常被定义为小的碱性蛋白质,在所有较高植物的所有阶段中都有广泛的贡献。从结构上讲,NSLTPS包含八个半胱氨酸的保守基序,由四个二硫化物键连接,以及一个疏水腔,其中配体被容纳。这种结构赋予稳定性并增强结合和运输各种疏水分子的能力。它们高度保守的结构相似性,但低序列身份反映了它们可以携带的各种配体,以及它们与之相关的广泛生物学功能,例如膜稳定,细胞壁组织和信号转导。此外,它们还被描述为对生物和非生物胁迫,植物生长和发育,种子发育和发芽的抗性至关重要。因此,对这种蛋白质家族在植物发育中的关键作用以及许多未解决的问题,需要阐明其亚细胞定位,传递能力,表达能力,生物学功能和进化,对此蛋白质的关键作用越来越越来越越来越大。
我们将外延的概念扩展到了“扭曲外观”的制度,并在两个受相对方向影响的两个底物之间的表层晶体取向。,我们在两个去角质的六角钼二硫化物(MOS 2)的两个底物之间退火纳米厚的金(AU)纳米颗粒,其基础平面的不同方向具有相互扭曲的角度,范围为0°至60°。透射电子显微镜研究表明,当双层的扭曲角度很小(<〜7°)时,AU在顶部和底部MOS 2之间对齐。对于较大的扭曲角,Au只有一个小的不良对象,而底部MOS 2则与双层MOS 2的扭曲角差异大致变化。四维扫描透射电子显微镜分析进一步揭示了与扭曲的外交相关的au纳米虫的周期性应变变化(<|±0.5%|),与两个MOS 2扭曲层的Moiré注册表一致。e