摘要:环境压力X射线光电子光谱(APXPS)与同时的电气测量结合,并由密度功能理论计算支持,以研究Operando动力学中基于基于气体的Tungsten二硫化物(WS 2)的感应机制。这种方法允许在现实的工作条件下的表面电势变化与WS 2传感活动层的电阻率之间的直接相关性。着眼于第2和NH 3的有毒气体,我们同时证明了氧化或还原剂之间的明显化学相互作用与WS 2活性层之间的明显化学相互作用及其对传感器响应的影响。The experimental setup mimics standard electrical measurements on chemiresistors, exposing the sample to dry air and introducing the target gas analyte at different concentrations.该方法适用于NH 3浓度100、230和760和14 ppm的NO 2浓度,为未来的APXPS研究建立了基准,用于在操作系统条件下进行快速获取时间和快速获取时间和1:1的电反应和光谱数据之间的相关性。我们的发现有助于更深入地了解2D过渡金属二分法中的传感机制,为针对各种工业应用和具有低能消耗的无线平台优化化学传感器铺平了道路。关键字:操作光谱,带弯曲,表面电势,密度功能理论,气体传感
摘要:钻石具有巨大的希望,是高压和极端条件电气电子产品的材料,这是由于其出色的特性,例如高热电导率,较大的电场强度以及高载流子迁移率和饱和速度。然而,在室温下缺乏可靠的N型掺杂方法,使基于钻石的电子产品停滞了。这一挑战之所以出现,是因为供体能量水平深处在带隙内,从而使载体充分热激活所需的更高的温度。我将讨论我们开发的替代途径来克服这种瓶颈,通过将原子薄的N型钼二硫化物(MOS₂)单层掺入,作为伪型P型Pype PolyCrystalline和Single-Crystal dionmond的伪三角掺杂层。这使得在室温下有效运行垂直2D/3D异质结构P-N结二极管。i还将与钻石石墨烯讨论我们以前的工作,该工作证明了通过与钻石的特殊热接口获得创纪录的电流密度(〜10⁹A/cm²),以及通过使用低体温CVD流程在GAN上直接沉积GAN的纳米晶钻,并通过直接沉积纳米晶体钻石来实现。我们的演示提供了新的见解,并为开发可靠,高性能钻石的电子产品提供了一个整体平台,并与低维和半导体材料集成在一起,以提高效率。
缩写:SMA,α平滑肌肌动蛋白;AA,氨基酸;BME,Eagle基础培养基;BMP4,骨形态发生蛋白-4;BFP,蓝色荧光蛋白;CoQH2,还原辅酶Q;CHP,氢过氧化异丙苯;DR,耐药;EBSS,Earle平衡盐溶液;EGF,表皮生长因子;FBS,胎牛血清;eIF2,真核起始因子2α;FACS,荧光激活细胞分选术;FITC,异硫氰酸荧光素;GAPDH,3-磷酸甘油醛脱氢酶;GFP,绿色荧光蛋白;GSH,谷胱甘肽;GSSG,谷胱甘肽二硫化物;GPX4,谷胱甘肽过氧化物酶4;HGF,肝细胞生长因子;HPLM,人血浆样培养基; iRFP,近红外荧光蛋白;Mel-MPM,黑色素瘤导向模块化生理培养基;MPM,模块化生理培养基;NAD,烟酰胺腺嘌呤二核苷酸;NAMPT,烟酰胺磷酸核糖转移酶;NAMPTi,烟酰胺磷酸核糖转移酶抑制剂;NEAA,非必需氨基酸;NHDF,正常人真皮成纤维细胞;PI,碘化丙啶;ROS,活性氧;Se,亚硒酸盐;SLC3A2,溶质载体家族 3 成员 2;SLC7A11,溶质载体家族 7 成员 11;xCT,胱氨酸/谷氨酸转运蛋白
木质素是产生生物质芳香族化合物的最有前途的候选者。然而,挑战在于在轻度条件下木质素单体之间的C键裂解,因为这些键具有高解离能。电化学氧化允许轻度切割C -C键,被认为是一种有吸引力的解决方案。为了在木质素的价值中实现低能消耗,使用高效的电催化剂是必不可少的。在这项研究中,开发了一种精心设计的催化剂,该催化剂由掺杂二氧化镍(Oxy)氢氧化物的钼二硫化物异质结的精心化催化剂。在高价状态下钼的存在促进了丁基氢过氧化物的吸附,从而导致临界自由基中间体的形成。此外,掺杂掺杂的掺杂掺入镍的电子结构,从而导致较低的能屏障。结果,异质结催化剂在木质素模型化合物中裂解Cα -Cβ键的选择性为85.36%,在环境条件下达到了93.69%的底物转换。此外,电催化剂解聚了有机溶质木质素(OL)的49.82 wt%的可溶性级分,导致高达13 wt%的芳族单体的产率。很明显,还使用工业牛皮纸木质素(KL)证明了制备的电催化剂的有效性。因此,这项研究提供了一种实施木质素精炼中电催化氧化的实用方法。
摘要:硫化物(RSSH)是内源产生的生物学上重要的反应性硫种类,保护关键的半胱氨酸残基免受不可逆转的氧化,并且在不同的酶促过程中是重要的中间体。尽管过分硫化物比硫醇对应物更强,但在特定环境中,硫化物也可以充当其中性,质子化形式的电力。此外,在两个硫原子上的硫化物都是亲电的,与硫醇酸盐的反应可以导致h 2 s释放,二硫化物形成或替代导致经硫化。尽管这些反应途径广泛接受,但控制硫化物是否通过H 2 S释放或转移硫化途径反应的特定特性仍然难以捉摸。在此,我们使用一种组合的计算方法和实验方法直接研究了硫化硫化物和硫醇之间的反应性以回答这些问题。使用DFT计算,我们证明了在硫化硫化物附近增加的空间散装或电子提取可以通过转分泌硫化途径分流过硫化物的反应性。从这些见解中构建,我们使用过硫化物供体和TME-AIM捕获剂来实验监测和测量从基于青霉素的硫硫胺到半胱氨酸基于硫醇的转移硫化,这是我们所知的最好的,这是对低分子重量之间的转移硫次的第一个直接观察。综上所述,这些合并的方法突出了纯硫化物的特性如何直接受到当地环境的影响,这对理解这些反应性物种的复杂化学生物学产生了重大影响。
摘要识别影响生物学重复跨DNA甲基化测量的稳定性的因子在基础和临床研究中至关重要。使用组间实验设计(n = 31,观测= 192),我们报告了生物学在不存在和存在急性社会心理压力的各种独特的时间场景中的稳定性,以及在急性的社会心理压力的情况下,以及经历过早期生命逆境(ELA)和非暴露个人的个体之间的稳定性。我们发现不同的时间间隔,急性应力和ELA暴露会影响重复的DNA甲基化测量值的稳定性。在没有急性应力的情况下,随着时间的流逝,探针的稳定性较低。但是,压力在较长的时间间隔内对探针产生了稳定影响。与不暴露的个体相比,ELA暴露的个体在急性应激后立即降低了探针稳定性。此外,我们发现,在所有情况下,用于估计表观遗传年龄或免疫细胞比例的大多数表观遗传算法中使用的探针具有平均或低于平均水平的稳定性,除了主要成分和DunedInpace表观遗传型时钟,这些时钟均具有更稳定的探针。最后,在没有压力的情况下,使用高度稳定的探针,我们确定了在存在急性应激的情况下降低甲基化的多个探针,无论ELA状态如何。两个低甲基化探针位于谷胱甘肽 - 二硫化物还原酶基因(GSR)的转录起始位点附近,以前已证明该基因是对环境毒素的应力反应的一部分。我们讨论了对未来研究的影响,以了解DNA甲基化测量的可靠性和可重复性。
摘要:弥漫性大 B 细胞淋巴瘤 (DLBCL) 仍是一种难以治愈的疾病,需要新的治疗模式。在这项研究中,我们阐明了 DLBCL 的治疗协同作用,即使用钉合肽 ATSP-7041 重新激活肿瘤蛋白 p53,从而引发细胞凋亡,并使用 BH3 模拟物 ABT-263 (navitoclax) 增强其对 BCL-2 家族调节的敏感性。虽然这种组合在体外可有效激活 DLBCL 细胞凋亡,但在体内具有高毒性,导致治疗窗口过窄。因此,我们开发了一种靶向纳米药物递送平台,以保持这种组合的治疗效力,同时通过包装和靶向递送钉合肽将其毒性降至最低。我们开发了一种靶向 CD19 的聚合物囊泡,使用聚乙二醇二硫化物与聚丙二醇硫化物 (PEG-SS-PPS) 的嵌段共聚物将 ATSP-7041 递送到 DLBCL 细胞中。在体外优化了细胞内递送,并使用侵袭性人类 DLBCL 异种移植模型在体内进行了验证。ATSP-7041 的靶向递送可实现与 ABT-263 进行系统性联合治疗,从而延缓肿瘤生长、延长生存期且无明显毒性。这项工作证明了聚合物囊泡纳米药物抗原特异性靶向、体内靶向递送钉合肽以及通过直接激活 p53 和 BCL-2 家族调节对 DLBCL 进行协同双重内在凋亡治疗的概念验证。关键词:纳米药物、毒性、靶向、钉合肽、DLBCL、凋亡 D
目的:这项研究的主要目的是研究2型糖尿病患者中血浆apelin浓度,氧化应激生物标志物(动态硫醇/二硫化物平衡)和蛋白尿之间的关系。方法:该研究是针对87例2型糖尿病患者和24岁和性别匹配的健康对照组进行的。血清猿浓度。比色法用于确定天然硫醇水平和总硫醇水平。斑点尿白蛋白和肌酐的浓度以计算白蛋白肌酐比率(mg/g)。结果:与对照组相比,2型糖尿病患者的血清猿浓度明显低得多(p <.001)。与健康患者相比,糖尿病患者的天然和总硫醇比也明显降低(p <.001)。计算出的患者和对照组的二硫键水平相似(p = .182)。在糖尿病患者中,血清猿浓度与血糖和血红蛋白A1C水平之间检测到负相关性和显着相关性(r = -0.272,p = .004,r = -0.280,p = .003)。在天然和总硫醇水平和白蛋白之间也观察到负相关性和显着相关性(r = -0.338,p = .001,r = -0.328,p = .001)。结论:我们发现2型糖尿病患者的血清猿浓度和天然硫醇水平明显降低。还观察到血清猿浓度和血糖控制之间的关联。Apelin和硫醇/二硫键在糖尿病肾脏疾病中的作用需要更详细的研究。关键字:糖尿病,氧化应激,动态硫醇/二硫键平衡,丙酰蛋白酶,糖尿病肾脏疾病,蛋白尿
连续的小型化将硅技术的特征大小降低到纳米尺度,在此尺寸不太尺寸的降低不足以提高性能。使用具有先进特性的新材料已成为必须满足降低功率以提高性能的需求。拓扑绝缘子具有高电导性拓扑保护的边缘状态,对散射不敏感,因此适用于节能的高速设备。在这里,我们通过采用有效的kbh phamiltonian来评估1T'钼二硫化物的狭窄纳米带中的子带结构。高电导性拓扑保护的边缘模式,其能量位于散装带隙内的在与传统电子和孔子带相等的基础上进行了研究。 由于边缘模式在相对侧之间的相互作用,线性光谱中的一个小间隙在狭窄的纳米孔中打开。 与垂直的平面电场相比,该差距与垂直的纳米替宾的行为相比,与垂直的平面电场急剧增加。 传统电子和孔子带之间的间隙也随垂直电场而增加。 两个间隙的增加导致弹道纳米托电导和电流的迅速减少,该电场可用于设计二硫化钼纳米吡啶基的电流开关。在与传统电子和孔子带相等的基础上进行了研究。由于边缘模式在相对侧之间的相互作用,线性光谱中的一个小间隙在狭窄的纳米孔中打开。与垂直的平面电场相比,该差距与垂直的纳米替宾的行为相比,与垂直的平面电场急剧增加。传统电子和孔子带之间的间隙也随垂直电场而增加。两个间隙的增加导致弹道纳米托电导和电流的迅速减少,该电场可用于设计二硫化钼纳米吡啶基的电流开关。
1 无机和分析化学,2 制药,3 无机和分析化学,维沙卡帕特南,530003,印度。摘要:纳米材料的生产和应用研究已经开展多年。由于基本元素钼和另一种化学元素硫(氧族元素)的性质不同,它们具有各种吸引人的特性。尽管我们对二硫化钼纳米粒子的成核、发展和结构所涉及的过程以及其生物特性和催化活性背后的机制的理解取得了重大进展,但仍存在许多困难。纳米材料的进化有助于在纳米级改变材料的形状和结构,以实现所需的应用。为了区分半导体相和金属相,人们开发了准二维 (Q2D) 材料,例如石墨烯和 2D 蜂窝硅,以及层状过渡金属二硫属化物 (TMD),例如二硫化钼 (MoS 2 ) (WS2)。因为它在从块体转变为纳米级时能够表现出广泛的特性。其中,二硫化钼 (MoS 2 ) 是一种有趣的多功能材料。由于其 (1.9 eV) 直线带隙值,单片 MoS 2 无疑能够实现后硅电子学。在室温下,它具有高开/关电流比和大约 200 cm 2 (Vs -1 ) 的迁移率。MoS 2 的结构也是其两个特性的决定因素。它对气体传感很有用,因为它具有六边形结构,其中 S-Mo-S 原子层共价连接,相邻的 MoS 2 层之间有范德华连接。由于 MoS 2 具有良好的特性,因此具有多种实际应用。我们力求在这篇综述中涵盖当前的合成技术及其在 2D MoS 2 材料中的应用。关键词:过渡金属二硫化物 (TMD)、二硫化钼 (MoS 2 )、二硫化钼材料的合成技术以及二硫化钼的应用。