关键词:移动激光雷达,图像,交通标志,胶囊卷积网络,高阶胶囊特征 摘要:本文提出了一种从移动激光雷达数据和数字图像中检测和识别交通标志的方法,用于智能交通相关应用。交通标志检测和识别方法包括两个步骤:首先从移动激光雷达数据中提取交通标志兴趣区域。接下来,通过卷积胶囊网络模型从多传感器移动激光雷达系统同时采集的数字图像中识别交通标志。实验结果表明,所提出的方法在检测三维点云中的交通标志和识别二维图像上的交通标志方面都获得了有希望、可靠和高性能。
在这项研究中,使用二维图像用于使用两步过程(8,14)来表征谷物和孔的形态。在第一步中,捕获图像。在第二步中,使用图像分析软件扫描了此类特征的面积和平均孔接触角,该软件能够准确测量孔隙和谷物空间的几个形态参数,如图1所示。本研究利用面积测量和接触角作为所有分析的标准参数。形态特征是根据面积和接触角度计算的,这将信息准确性的水平分为两个维度。该信息被认为是“大数据”,并分析了以找到可以减少成本和时间的答案。
实验条件(例如,比较在不同离子强度下稳定的化合物是没有意义的)。接下来,将结构上的数据(来自二维图像)转换为已知恒定长度的向量(特征向量)。将矢量数据发送到机器学习模型并输出结果。数据。一切的基础。通常他们谈论大数据,但其数量取决于数据的纯度、方法和期望的结果。通常,在图 1.2 中,数据位于这个金字塔的底部。数据是指事实、信号、测量值,通常是非结构化的东西。数据通常不是原生的、异构的且格式不方便。在这些数据“沼泽”可以被使用之前,它必须经过组织数据、添加上下文、元数据、给这些数据添加标签、清理数据、严格检查数据等过程。简而言之,数据需要经过极其彻底的处理才能使用。
图1。单层MOS 2的光致发光中的异常功率依赖性。(a)(左列)光致发光区域的空间图像和(右列)在不同入射功率密度下PL的空间光谱曲线的二维图像。这两种类型的图像共享相同的垂直轴。如图所示,入射功率被标记。(b)PL光谱从照明区域的中心提取。(c)PL强度(黑色曲线)和PL区域的大小(红色曲线)具有入射力。(d)位置(具有最大振幅)和PL峰的FWHM作为入射力的函数。(c)和(d)中有白色的两个区域表示两个过渡,从游离激子(Fe)到电子孔等离子体(EHP),从电子孔等离子体(EHP)到电子孔液体(EHL)。
扩散模型由于其众多优点已成为一种流行的图像生成和重建方法。然而,大多数基于扩散的逆问题解决方法仅处理二维图像,即使是最近发表的三维方法也没有充分利用三维分布先验。为了解决这个问题,我们提出了一种新方法,使用两个垂直的预训练二维扩散模型来解决三维逆问题。通过将三维数据分布建模为不同方向切片的二维分布的乘积,我们的方法有效地解决了维数灾难。我们的实验结果表明,我们的方法对于三维医学图像重建任务非常有效,包括 MRI Z 轴超分辨率、压缩感知 MRI 和稀疏视图 CT。我们的方法可以生成适合医疗应用的高质量体素体积。代码可在 https://github.com/hyn2028/tpdm 获得
背景 CBCT 是一种获取三维射线图像的方法,在牙科领域越来越受欢迎。生成的图像易于使用,并且比传统的二维射线照片提供更多信息。三维成像能够捕获骨骼和软组织,然后可以一起或单独显示(图 1)。与螺旋 CT 和扇形 CT 等早期 CT 技术一样,可以观察到“逐片”轴向、矢状和冠状图像,但 CBCT 软件还结合了参考线,使这些切片的定位变得不那么复杂。例如,即使只观察冠状视图或完整图像的一小部分,矢状切片视图中的线也会指示正在分析的切片或对象的高度和位置(图 2)。CBCT 本质上是数字化的,它使用计算机程序从一系列 250 到 300 张二维图像构建三维体积。CBCT 术语反映了这一重点。例如,体素用于代替像素,因为它指的是体积而不是二维空间。图像文件是 DICOM(数字成像和
与荧光素血管造影(FA)相比,DR的黄金标准诊断标准,八颗八颗有助于评估视网膜微瘤状况。作为需要静脉穿刺和染料输注的方法,FA是侵入性且耗时的。此外,FA仅提供二维图像[3,4]。加上,深毛细血管(DCP)的八八图比其FA图像清晰。此外,在测量中央凹性血管区(FAZ)[5]时,八八颗粒的观察者间变异性比FA较小。八八人在诊断DR方面具有几个独特的优势。它具有在微血管异常(MAS)(MAS)之前检测到的早期迹象的能力,这些迹象包括毛细血管辍学,扩张的毛细血管环和毛细管分支[6]。此外,它可以检测一些未被FA捕获的MAS [7,8]并识别MAS和受影响的毛细血管丛的位置[9]。考虑到其清楚地识别增殖膜和后透明膜之间的结构关系[10-12],八
光学显微镜是生物学中最强大的工具之一。能够在广泛的尺度上可视化生命结构和事件的能力导致了基础发现。同时,为了更有效地研究活体组织,需要克服一些限制。例如,在传统显微镜中,样品要么在整个成像场上同时被照亮(宽视野照明),要么逐个像素依次被照亮(点扫描照明)。宽视野方法可以高速成像,因为它使用相机一次捕获二维图像,但它会受到光散射产生的像素串扰的影响。在点扫描方法中,单个像素检测器捕获荧光信号并逐个像素构建图像;当使用双光子激发时,它会大大减少光散射的串扰。但是,虽然双光子显微镜适合对散射组织深处进行成像,但作为一种点扫描方法,其成像速度较慢。
摘要:情感在我们的日常生活中起着至关重要的作用,因此对情感反应的理解和认识对于人类的研究至关重要。有效的计算研究主要使用了非免疫性的二维图像或视频来引起情绪状态。然而,沉浸式虚拟现实使研究人员能够模拟具有高水平的存在感和互动感的受控实验室条件中的环境,在情感研究中变得越来越流行。此外,它与隐式测量和机器学习技术的协同作用有可能在许多研究领域横向影响,并为科学界打开了新的机会。本文介绍了对使用头部安装显示作为启发设备进行生理和行为度量进行的情感识别研究的系统回顾。结果突出了领域的演变,使用汇总分析给出了清晰的观点,揭示了当前的开放问题,并为将来的研究提供了指南。