描述Muramyl二肽(MDP)是一种由N-乙酰毛素酸组成的合成免疫反应性肽,其乳酸部分与L-丙氨酸D-异谷胺二肽的N-末端相连。MDP是几乎所有细菌中发现的最小生物活性肽聚糖基序。它首先被识别为Freund完整辅助1中的活动组件。MDP被胞质受体NOD2 2,3识别。配体 - 结合NOD2通过丝氨酸/苏氨酸RIP2(Rick,Cardiak)激酶通过卡片卡均质相互作用4。一旦激活,RIP2介导了NEMO/IKKγ的泛素化,从而导致NF-κB的激活和炎症细胞因子的产生。此外,多泛素化的RIP2募集了TAK1,这会导致IKK复合物激活和MAPK 5的激活。此信号涉及适配器蛋白卡9 6。nod2识别MDP对L-D异构体是立体特异性的,不包括对D-D或L-L类似物3的任何反应。MDP的有效辅助活性也可能与NLRP3炎性症7的激活有关。值得注意的是,已经发现与克罗恩病易感性相关的NOD2突变体在识别MDP 2、3方面缺乏。
C9ORF72基因中的GGGGCC 24+六核苷酸重复膨胀(HRE)是肌萎缩性侧向硬化症(ALS)和额颞痴呆(FTD)最常见的遗传学原因(ALS),致命的神经退行性疾病,没有治疗或不接受疾病的疾病疾病的疾病降低或不得已。神经元死亡的机械基础包括C9orf72单倍依耐酸,核中RNA结合蛋白的隔离以及二肽重复蛋白的产生。在这里,我们使用了腺相关的病毒载体系统来提供CRISPR/CAS9基因编辑机构,以实现从C9ORF72基因组基因座中移除HRE。我们证明了三种含有膨胀的小鼠模型(500 - 600重复)以及患者来源的IPSC运动神经元和脑类动物(450重复)的三种小鼠模型(450个重复)中HRE的成功切除。这导致了RNA焦点,多二肽和单倍耐酸的降低,这是C9-ALS/FTD的主要标志,这使得这是这些疾病的有前途的治疗方法。
C9ORF72 基因内含子 1 中的六个核苷酸重复扩增是影响肌萎缩侧索硬化症和额颞叶痴呆症患者的最常见的基因突变。重复扩增的双向转录会产生正义和反义重复 RNA,这些 RNA 随后可以在所有阅读框架中翻译,从而产生具有独特末端的六种不同的二肽重复 (DPR) 蛋白。这些蛋白质在 C9ORF72 重复扩增中的准确翻译起始位点仍然难以捉摸。我们使用 CRISPR-Cas9 基因组编辑和空间阻断反义寡核苷酸 (ASO) 研究反义重复 RNA 中的不同 AUG 密码子对 C9ORF72 扩增载体运动神经元和淋巴母细胞中 DPR 蛋白、poly(GP) 和 poly(PR) 产生的贡献。然后,我们利用针对 C9ORF72 正义重复 RNA 的 ASO 来检查正义或反义 RNA 是否是 poly(GP) 蛋白的主要来源 - 这个问题存在相互矛盾的证据。我们发现这些 ASO 减少了预期的正义 RNA 靶标,但也减少了反义 RNA,从而阻止了 poly(PR) 的产生。我们的数据强调了反义 CCCCGG 重复扩增之前的序列对于反义 DPR 蛋白合成的重要性,并支持使用正义 C9ORF72 ASO 来防止正义和反义依赖性 DPR 蛋白在 C9ORF72 ALS/FTD 中的积累。
CGPMAX儿科支持是一种由黑加仑(水果)粉末和水解胶原蛋白配制的天然补充剂。这些食物成分自然富含一种称为环状甘氨酸 - 脯氨酸(CGP)的二肽。我们的专有制造过程集中并稳定粉末中的CGP。CGP是一种天然在体内生产的分子,但是在某些疾病状态下,我们的CGP内部水平可能不足,因此补充可能是补充人体CGP水平的好选择。
腹腔疾病是一种T细胞介导的小肠自身免疫性疾病,在遗传性易感个体中诱发了麸质摄入。它影响约1%的人口(10)。麦醇麦二肽中的高谷氨酰胺和脯氨酸含量使它们具有抗酶消化能力,从而导致它们在胃肠道中不完全崩溃(11)。这些麦芽二肽交叉肠上皮细胞,组织转谷氨酰胺酶(TTG)酶脱酰胺脱酰胺,然后在抗原呈递细胞(APC)上被HLA-DQ2或-DQ8识别。这些APC将有毒肽呈现给CD4+ T细胞,该细胞会产生促炎性细胞因子。t辅助1(Th1)细胞因子增强了上皮内淋巴细胞(IELS)和天然杀伤(NK)T细胞的细胞毒性,从而通过FAS/FAS/FAS配体(FASL)系统或IL-15诱导的完美蛋白/Granzyme和NKICA和NKICA,从而导致肠细胞凋亡。t辅助辅助2(Th2)细胞因子激活B细胞,从而导致其克隆膨胀并分化为分泌抗体分泌浆细胞(抗Gliadin和抗TTG)(12)。
抽象的多药微生物已成为全球主要的公共卫生问题。肠道微生物组是用于保护人体免受病原体的生物活性化合物的金矿。我们使用了一种多摩学方法,该方法通过代谢组分析整合了74个共生肠道微生物组分离株的全基因组测序(WGS),以发现它们与沙门氏菌和其他抗生素耐药病原体的代谢相互作用。我们根据WGS注释曲线评估了这些选定分离株的功能潜力差异。此外,确定了选定的共生肠道微生物组分离株的共培养上清液中最大的代谢产物,包括一系列二肽,并检查了其防止各种抗生素抗性细菌生长的能力。我们的结果提供了令人信服的证据,表明肠道微生物组会产生代谢产物,包括可能应用于抗感染药物的二肽的化合物类别,尤其是针对抗生素耐药的病原体。我们既定的肠道微生物组生物活性代谢产物的发现和验证的管道是作为多种耐药感染的新候选者,这是发现抗菌铅结构的新途径。
摘要:三级烧伤受伤构成了重大的健康威胁。迫切需要更安全,更易于使用,更有效的技术来治疗。我们假设脂肪酸和三肽的共价结合物可以形成与伤口兼容的水凝胶,从而加速愈合。我们首先将共轭结构设计为脂肪酸 - 氨基酸1 – amonoacid2-Apartate Am- phiphiles(CN酸– AA1 – AA2 – D),它们有可能根据每个小节的结构和特性自组装成水凝胶。然后,我们通过使用两种FMOC/TBU固相肽合成技术,基于该设计生成了14种新型结合物。我们通过串联质谱和核磁共振光谱验证了它们的结构和纯度。在低浓度(≥0.25%w / v)中形成13个结合物,但是C8酸性-ILD-NH 2显示出最佳的水凝胶化,并进一步研究了。扫描电子显微镜表明,C8酸性NH 2形成纤维网络结构和迅速形成的水凝胶,这些水凝胶在磷酸盐缓冲盐水中稳定(pH 2-8,37°C),这是一种典型的病理生理条件。注射和流变学研究表明,水凝胶表现出重要的伤口治疗特性,包括注射性,剪切稀疏,快速再凝胶和与伤口兼容的力学(例如Moduli g'''和g',g',〜0.5-15 kpa)。C8酸-ILD-NH 2(2)水凝胶显着加速了C57BL/6J小鼠上三级烧伤伤口的愈合。在一起,我们的发现证明了CN脂肪酸-AA1 – AA2-D分子模板的潜力,以形成能够促进三级燃烧的伤口愈合的水凝胶。
摘要2型糖尿病(DM2)是一种以胰岛素抵抗和相对胰岛素缺乏为特征的慢性疾病,对全球公共卫生来说是一个重大挑战。DM2病理生理学与胰岛素抵抗密切相关,其中人体细胞对胰腺胰岛素的反应不足,导致高血糖水平。在开发DM2,肥胖,缺乏体育锻炼,不健康饮食和遗传易感性的风险因素中脱颖而出。DM2的诊断通常是通过评估空腹血糖水平和口服葡萄糖耐受性测试而进行的。一旦被诊断出,药理治疗主要旨在控制血糖水平,通常包括二甲双胍,磺酰氟脲,二肽二肽肽酶-4(DPP-4)抑制剂和GLP-1受体受体激动剂等药物。但是,非药物治疗起着至关重要的作用,可能包括生活方式的改变,例如健康饮食,定期运动和体重减轻。尽管DM2历史上与老年人有关,但在儿童中观察到它的增加,主要是由于儿童肥胖症的增加。这需要考虑到该人群的特定需求,需要一种专门的诊断和治疗方法。此外,儿童的DM2可能导致长期并发症,包括心血管疾病,神经病,视网膜病和肾功能障碍。最后,DM2代表了全球卫生系统的一项多方面挑战,需要采用整体方法,其中包括用于控制血糖的药理治疗,但也需要非药理学干预措施,以解决可修改的危险因素,以及对弱势群体(如儿童)的诊断和治疗的特别关注。关键字:2型糖尿病,诊断,流行病学,病因,治疗。
基于扩散的生成模型在合成和操纵图像具有巨大的图像方面表现出了令人鼓舞的结果,其中文本到图像模型及其后续作品在学术界和行业中都具有很大的影响。编辑真实图像时,用户通常希望对不同元素具有直观而精确的控制(即对象)组成图像,并不断地操纵它们。我们可以根据图像中的单个观察的控制级别对现有的图像编辑方法进行分类。一条工作涉及使用文本提示来操纵图像[2,15,24,27]。由于很难与文本同时描述多个对象的形状和外观,因此在对象级别上对细粒度控制的能力有限。同时,迅速的工程使操纵任务乏味且耗时。另一项工作线使用低级调理信号,例如Hu等人。[18],Patashnik等。[34],Zeng等。[58],草图[50],图像[5,47,54]编辑图像。但是,其中大多数作品要么属于迅速的工程陷阱,要么无法独立操纵多个对象。与以前的作品不同,我们的目标是独立控制组成图像的多个对象的正确条件,即对象级编辑。我们表明,我们可以在对象级编辑框架下制定各种图像编辑任务,从而实现全面的编辑功能。
