泳池水中的氯与有机化合物发生反应,形成消毒副产物 (DBP),例如单氯胺、二氯胺和三氯胺。氯胺具有挥发性,会释放气体并浓缩在水/空气界面上,游泳者会在此呼吸,导致眼睛灼痛和呼吸问题,从而影响游泳表现和长期健康。氯胺会进一步扩散到游泳池大厅,造成腐蚀和令人讨厌的“氯气味”。
该案例研究深入研究了甲氧氯普胺引起的快速发作精神病的罕见而显着的发生,这代表了小儿种群中同类案例的第一个报告。几个因素的收敛似乎已经促进了这种非典型状况的表现,尤其是在儿童中。首先,由于神经发育障碍患者的患者,患者对这种不良反应的敏感性可能会大大导致患者对这种不良反应的敏感性,因为神经发育障碍的人有增加患有其他心理健康状况(包括精神病)的风险。18,19这种增强的脆弱性部分是由于它们的基本遗传,神经生物学异常和环境压力之间的复杂相互作用。20,21此外,这些人通常需要进行药理学干预措施,以加剧或沉淀神经精神症状。研究表明,不良药物反应在该人群中更为普遍,需要仔细管理和监测其药物治疗方案以减轻潜在的风险。22,23此外,值得注意的是,甲氧氯普胺后发生精神病的其他两个病例是老年年龄,并且已经在5-10年前大约在5至10年前遭受了脑血管事件。11因此,这些情况中的每一个似乎都表现出某种神经系统脆弱性,尽管以不同的方式表现出来。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月13日。 https://doi.org/10.1101/2025.02.13.638192 doi:Biorxiv Preprint
DOI: 10.56083/RCV4N10-148 Receipt of Originals: 09/11/2024 ACCEPTANCE FOR PUBLICATION: 10/01/2024 ANA ANGÉLICA FERREIRA BENTO CARDOSO LION IN MEDICINE INSTITUTION: UNIVERSITY CENTER TANCREDO DE ALMEIDA NEVES (UNIPTAN) EDUARDA COSTA GOMES IN MEDICINE INSTITUTION: UNIVERSITY CENTER PRESIDENT TANCREDO DE ALMEIDA NEVES地址:米纳斯总部,电子邮件:mariaedadacg1234@icloud.com douglas robertoguimarãessilva silva食品科学:联邦拉夫拉斯大学(UFLA)地址:SãoJoãoJoãodelRei,巴西邮件,巴西邮件已被讨论,因为它因其替代性而被讨论,以使其因自动降低而造成自动化。抗炎和抗焦虑特性。 也就是说,目前的工作旨在对大麻二酚在治疗自闭症谱系障碍治疗的科学文献进行综述。 使用的方法是一本综合文献综述,DOI: 10.56083/RCV4N10-148 Receipt of Originals: 09/11/2024 ACCEPTANCE FOR PUBLICATION: 10/01/2024 ANA ANGÉLICA FERREIRA BENTO CARDOSO LION IN MEDICINE INSTITUTION: UNIVERSITY CENTER TANCREDO DE ALMEIDA NEVES (UNIPTAN) EDUARDA COSTA GOMES IN MEDICINE INSTITUTION: UNIVERSITY CENTER PRESIDENT TANCREDO DE ALMEIDA NEVES地址:米纳斯总部,电子邮件:mariaedadacg1234@icloud.com douglas robertoguimarãessilva silva食品科学:联邦拉夫拉斯大学(UFLA)地址:SãoJoãoJoãodelRei,巴西邮件,巴西邮件已被讨论,因为它因其替代性而被讨论,以使其因自动降低而造成自动化。抗炎和抗焦虑特性。也就是说,目前的工作旨在对大麻二酚在治疗自闭症谱系障碍治疗的科学文献进行综述。使用的方法是一本综合文献综述,
使用气候影响评估工具审查所有现有服务,就好像它们是新建议一样 - 像往常一样业务将导致像往常一样的有害排放水平。注意:《气候影响评估条例》第4(2)条2023指出:“一项积极或被动地继续进行公共机构的现有行动或活动的决定应被视为该公共机构的建议,如果尚未审查到2027年3月31日的交付方式和交付机制。”
了解胺与金纳米粒子表面之间的相互作用非常重要,因为它们在稳定纳米系统、形成蛋白质冠层以及制备半合成纳米酶方面发挥着重要作用。通过使用荧光光谱、电化学、X 射线光电子能谱、高分辨率透射电子显微镜和分子模拟,可以详细了解这些相互作用。本文表明,胺与纳米粒子表面 Au(0) 原子相互作用,其孤电子对的强度与校正空间位阻后的碱度呈线性相关。结合动力学取决于金原子的位置(平面或边缘),而结合模式涉及单个 Au(0) 和位于其上方的氮。一小部分仍然存在的表面 Au(I) 原子被胺还原,产生更强的 Au(0)-RN。 +(RN . ,失去一个质子后)相互作用。在这种情况下,结合模式涉及两个 Au(0) 原子,它们之间有一个桥接氮。当蛋白质参与(至少部分参与)金离子的还原时,可以更好地获得稳定的金纳米粒子,就像稳健的半合成纳米酶制备所需的那样。
6。跨学科的整合与协作:整合来自不同学科的见解,包括化学,生物学,材料科学和环境科学,对于应对胺研究中的复杂挑战至关重要。在不同领域具有专业知识的研究人员之间的合作努力可以促进为跨学科问题的整体解决方案的发展。但是,跨学科的有效合作和沟通仍然是一个挑战,需要努力弥合学科界限并促进解决这些问题的知识交流,需要跨学科的研究人员的合作努力,综合和表征的创新方法,以及对可持续性和社会影响的承诺。通过应对这些挑战,研究人员可以提高我们对胺的理解,并利用他们满足关键科学和社会需求的潜力。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年8月26日发布。 https://doi.org/10.1101/2024.08.24.609500 doi:Biorxiv Preprint
deta nonoates¼二乙烯胺N-二核酸酯; gsh¼谷胱甘肽; gsno¼s -Nitrosoglutathione; HASMC¼人主动脉平滑肌细胞; Huasmc¼人脐动脉平滑肌细胞; HUVEC¼人脐静脉内皮细胞; MOF¼金属有机框架;无¼一氧化氮; NP¼Nanoparpicle; pCl¼Poly(ε-丙二酮); pCl/pk¼poly(ε -caprolactone)/phos -phobetaination phobetaination jeratin; poss-pcu;多面体寡聚西锡烷烷烷基聚氨酯氨基甲酸酯; rsno¼s-亚硝基硫醇; SMC¼平滑肌细胞; Snap¼s-硝基 - N-乙酰苯胺胺; VSMC¼血管平滑肌细胞。
80 戊-1-铵 ( m = 4),81 己-1-铵 ( m = 5),81 庚-1-铵 ( m = 6),82 辛-1-铵 ( m = 7),82 壬-1-铵 ( m = 8);82 癸-1-铵 ( m = 9),82, 83 十一-1-铵 ( m = 10);83 RP2,2-(甲硫基)乙胺 (MTEA);84 RP3,烯丙基铵 (ALA);85 RP4,丁-3-炔-1-铵 (BYA);86 RP5,2-氟乙基铵;87 RP6,异丁基铵 (iso-BA);88 RP7,4-丁酸铵 (GABA);89 RP8,5-戊酸铵 (5-AVA); 90 RP9,杂原子取代的烷基铵;91 RP10,环丙基铵;92, 93 RP11,环丁基铵;92, 93 RP12,环戊基铵;92, 93 RP13,环己基铵;92, 93 RP14,环己基甲基铵;94 RP15,2-(1-环己烯基)乙基铵;95, 96 RP16,(羧基)环己基甲基铵 (TRA);97 RP17,苯基三甲基铵 (PTA);98 RP18,苄基铵 (BZA);99-104 RP19,苯乙铵 (PEA);50, 100, 101, 105-108 RP20,丙基苯基铵 (PPA); 100, 101 RP21,4-甲基苄基铵;109 RP22,4-氟苯乙铵 (F-PEA);106, 110-113 RP23,2-(4-氯苯基) 乙铵 (Cl-PEA);111 RP24,2-(4-溴苯基) 乙铵 (Br-PEA);111 RP25,全氟苯乙铵 (F5-PEA);114 RP26,4-甲氧基苯乙铵 (MeO-PEA);112 RP27,2-(4-芪基)乙铵 (SA);115 RP28,2-(4-(3-氟)芪基)乙铵 (FSA); 115 RP29,2-噻吩基甲基铵 (ThMA);116 RP30,2-(2-噻吩基)乙铵;116 RP31,2-(4'-甲基-5'-(7-(3-甲基噻吩-2-基)苯并[c][1,2,5]噻二唑-4-基)-[2,2'-联噻吩]-5-基)乙-1-铵 (BTM);117 RP32,1-(2-萘基)甲铵 (NMA);118 RP33,2-(2-萘基)乙铵 (NEA);118 RP34,萘-O-乙铵;119 RP35,芘-O-乙铵;119 RP36,苝-O-乙铵; 119 RP37,3-碘吡啶(IPy);97 RP38,咔唑烷基铵(CA-C4)。120 DJ 相:DJ1,丙烷-1,3-二胺(PDA,m = 3);121 丁烷-1,4-二胺(BDA,m = 4);122-126 戊烷-1,5-二胺(m = 5);125 己烷-1,6-二胺(HDA,m = 6);124,125 庚烷-1,7-二胺(m = 7);125 辛烷-1,8-二胺(ODA,m = 8);124,125 壬烷-1,9-二胺(m = 9)125 癸烷-1,10-二胺(m = 10); 126 十二烷-1,12-二铵(m=12);126, 127 DJ2,N 1 -甲基乙烷-1,2-二铵(N-MEDA);128 DJ3,N 1 -甲基丙烷-1,3-二铵(N-MPDA);128 DJ4,2-(二甲氨基)乙基铵(DMEN);129 DJ5,3-(二甲氨基)-1-丙基铵(DMAPA);129 DJ6,4-(二甲氨基)丁基铵(DMABA);129 DJ7,质子化硫脲阳离子;130 DJ8,2,2′-二硫代二乙铵;91, 131 DJ9,2,2′-(亚乙基二氧基)双(乙基铵) (EDBE);132 DJ10,2-(2-