介电性手性超脸是一种新型的平面和高效的手性光学设备,显示出强圆形二分法或光学活动,在光学传感和显示中具有重要的应用潜力。然而,传统手性跨面中的两种类型的手性光学反应通常是相互依存的,因为它们对正交圆形极化组件的幅度和阶段的调节是相关的,这限制了芯Riral Meta-devices的进一步进展。在这里,我们提出了一种新的方案,用于独立设计手性跨膜的圆形二色性和光学活性,以进一步控制传输波的极化和波前。受到手性分子异构体的混合物的启发,我们使用介电异构体谐振器形成“超级单元”,而不是Terahertz带中的手性反应,而不是单个元原子,这被称为Racemic Metasurface。通过在元原子和“超级单元”之间引入两个级别的pancharatnam-berry阶段,可以在没有远场圆形二科运动的情况下进行极化旋转角度和梁的波前。我们通过模拟和实验证明了该方案的Terahertz波的强大控制能力。此外,这种具有近场手性但没有远场圆形二分法的新型设备在光学传感和其他技术中也可能具有重要价值。
光和图像形成的传播:huygens的原理,费马特的原理,反射和折射法,在球形表面薄镜片上的折射,牛顿方程的薄镜。矩阵方法中的矩阵方法:射线传输矩阵,较厚的镜头,系统矩阵元素的重要性,基数,光学仪器,光学仪器,色和单色畸变。叠加和干扰:站立波,节拍,相位和组速度,两光束和多光束干扰,薄介电膜,米歇尔森和Fabry-perot干涉仪,分辨能力,自由云端范围。极化:线性,圆形和椭圆极化,琼斯矩阵,偏振光的产生,二色性,Brewster定律,双重折射,双重折射,电磁和磁光效应。衍射:单个缝隙,矩形和圆形光圈,双缝,许多缝隙,衍射光栅,分散剂,分散功率燃烧的光栅,区域板,矩形孔径。连贯性和全息图:时间连贯性,空间连贯性,点对象的全息图和扩展对象。Laser: Population Inversion, Resonators, Threshold, and Gain Energy Quantization in Light and Matter, Thermal Equilibrium and Blackbody Radiation, Non-laser Sources of Electromagnetic Radiation, Einstein's Theory of Light-Matter Interaction, Elements, operation, Characteristics, types and Parameters of Laser, Rate Equations Absorption, Gain Media, Steady-State Laser Output, Homogeneous Broadening,不均匀的拓宽,时间依赖性现象。
与电磁(EM)波相互作用时,具有亚波长度的结构表现出异常的行为,可以用于多种新型应用。特别是,当金属表面异常之间的相互作用与入射光之间的相互作用导致表面浓缩的evaneScent波波激发称为表面等离子体(SPS)时,就会产生这种行为。1,2 SP是集体表面电荷振荡,该振荡在金属界面上传播,并具有超出衍射极限的字段实现。3–6手性结构是那些通过任何类型的旋转都无法与镜像叠加的那些结构。7,8这些结构表现出光学活性,即当左圆极化(LCP)或右圆极化(RCP)光的光发射时,具有不同的光学响应。与自由空间的光模式相反,等离子波对2D手性敏感。9–11表现出与偏光光相互作用的手性纳米结构在提高光谱特性的敏感性方面起着至关重要的作用。12,13可以通过代表RCP和LCP状态与波长之间的传递或吸收差的圆形二色性(CD)来表达光学活性。可以在天然手性材料(包括糖溶液和石英晶体)中找到光活性。14,15最近,已经表明,手性超材料在控制和操纵光的极化状态方面具有非凡的能力。例如,平面性手性结构的2D阵列,例如γ形金属纳米粒子,前后后背对称性
钴双(二碳化物) (COSAN) 是一种金属碳硼烷,可用作多功能药效团,用于制备具有生物活性的有机无机混合化合物或改善核苷、反义寡核苷酸和 DNA 嵌入剂的药理特性。尽管有这些应用,但 COSAN 与核酸的相互作用仍不清楚,这限制了基于金属碳硼烷的药物开发的进一步发展。虽然 COSAN 可以嵌入 DNA,但含有 COSAN 的嵌入剂却不会,而且虽然 COSAN 表现出低细胞毒性,但嵌入剂通常具有高毒性。本研究旨在使用多种技术全面表征 COSAN 与 DNA 之间的相互作用,包括紫外可见吸收、圆二色性 (CD) 和线性二色性、核磁共振 (NMR) 光谱、热变性、粘度、差示扫描量热法 (DSC)、等温滴定量热法 (ITC) 和平衡透析测量。我们的结果表明,COSAN 对 DNA 结构、长度、稳定性或杂交没有影响,COSAN 与 DNA 结合的迹象微乎其微。此外,体外实验表明,DNA 不是 COSAN 在高浓度下诱导细胞毒性所必需的。这些发现表明 COSAN 是一种 DNA 中性药效团,从而证实了金属碳硼烷的普遍安全性和生物相容性,并为进一步开发基于金属碳硼烷的药物开辟了新的机会。
来自2D纳米材料的复合材料显示出独特的高电气,热和机械性能1,2。在极端条件下,高光谱光学元件需要将其稳健性与极化旋转配对。然而,刚性纳米片具有随机的运动形状,它扰乱了具有可比波长的光子的圆形极化。在这里,我们表明,尽管纳米气门是纳米气门和部分混乱,但来自2D纳米材料的多层纳米复合材料强烈且可控制地旋转光偏振。纳米复合膜中强烈的圆二色性(CD)源自皱纹,凹槽或脊的对角线模式,导致线性双折射(LB)轴(LB)和线性二色性(LD)之间的角度偏移。逐层(LBL)组装的纳米复合材料的分层提供了从不精确的纳米片的精确工程,其光学不对称g因子为1.0,超过了典型的纳米材料的含量为1.0。复合光学元件的高热弹性可实现高达250°C的工作温度,并在光谱的近红外(NIR)部分的热发射器进行成像。将LBL工程的纳米复合材料与ACHIRAR染料相结合,导致各向异性因素接近理论极限。来自硫化钼(MOS 2),MXENE和氧化石墨烯(GO)的纳米复合极化器以及两种制造方法证明了观察到的现象的一般性。可以为坚固的光学元件进行计算设计和加性设计的大型LBL光学纳米组件。
[3] Huan Zhao; Linghan Zhu;江西li; Vigneshwaran Chandrasekaran;乔恩·凯文·鲍德温(Jon Kevin Baldwin);迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski;李阳;汉·htoon。操纵近红外量子光生成的层间激子。纳米字母。2023,23,11006-11012。[4] Xiangzhi li;安德鲁·琼斯(Andrew C Jones); Junho Choi; Huan Zhao; Vigneshwaran Chandrasekaran;迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski; ma rta a tschudin;帕特里克·雷瑟(Patrick Reiser);大卫百老汇。在应变工程WSE2/NIPS3异质结构中,接近诱导的手性量子光生产生。自然材料。2023,22,1311-1316。[5] Huan Zhao;迈克尔·佩特斯(Michael t Pettes); Zheng;汉·htoon。位点对照的电信波长单光子发射器在原子上薄的Mote2中。nat Commun。2021,12,6753。[6] Huan Zhao; Beibei Wang; Fanxin Liu;小对Haozhe Wang; Wei Sun Leong;马克·史蒂文斯(Mark J Stevens); Priya Vashishta; aiichiro nakano;庆。流体流有助于范德华材料的确定性折叠。高级功能材料。2020,30,1908691。[7] Tong Wu†; Huan Zhao†; Fanxin Liu; Jing Guo;汉王。设备的机器学习方法 - 基于随机设备设备的玻尔兹曼机器的电路合作。ARXIV预印ARXIV:1905.04431。2019。[8] Shanyuan Niu†; Huan Zhao†; Yucheng Zhou; Huaixun Huyan;博伊恩赵;江宾;斯蒂芬·B·克罗宁(Stephen B Cronin);汉王; Jayakanth Ravichandran。中波和长波红外线二色性二色性二色性在六角形钙钛矿甲状腺素中。材料的化学。2018,30,4897-4901。[9] Shanyuan Niu†;格雷厄姆·乔†; Huan Zhao†; Yucheng Zhou;托马斯·奥维斯(Thomas Orvis); Huaixun Huyan;贾德·萨尔曼(Jad Salman); Krishnamurthy Mahalingam;布列塔尼·乌尔文(Brittany Urwin);江宾·吴(Jiangbin Wu)巨大的光学各向异性在准尺寸晶体中。nat光子学。2018,12,392。[10] Ivan Esqueda; Huan Zhao;汉王。有效的学习和横杆操作,具有原子薄的2-D材料化合物突触。应用物理学杂志。2018,124,152133。[11] Zhipeng Dong; Huan Zhao;唐·迪马齐奥(Don Dimarzio); Myung-Geun Han; Lihua Zhang;杰西·蒂斯(Jesse Tice);汉王; Jing Guo。由2-D材料启用了原子上的CBRAM:缩放行为和性能限制。电子设备上的IEEE交易。2018,65,4160-4166。[12] Huan Zhao; Zhipeng Dong;他天;唐·迪马尔兹(Don Dimarzi); Myung-Geun Han; Lihua Zhang;小对Fanxin Liu;朗山; Shu-Jen Han。原子上薄的femtojoule候选装置。高级材料。2017,29,1703232。[13] Bolin Liao†; Huan Zhao†; Ebrahim Najafi;小对他天;杰西·蒂斯(Jesse Tice);奥斯汀·J·明尼奇(Austin J Minnich);汉王;艾哈迈德·H·泽尔(Ahmed H Zewail)。黑磷中各向异性光载体动力学的时空成像。纳米字母。2017,17,3675-3680。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。 单层钼二硫化物纳米纤维具有高光学各向异性。 高级光学材料。 2016,4,756-762。 纳米研究。 2015,8,3651-3661。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。单层钼二硫化物纳米纤维具有高光学各向异性。高级光学材料。2016,4,756-762。纳米研究。2015,8,3651-3661。[15] Huan Zhao†; Jiangbin Wu†;宗宗; qiushi guo;小王;富兰斯Xia;李阳; Pingheng tan;汉王。在各向异性原子上稀薄的鼻鼻中的层间相互作用。[16] Yichen Jia; Huan Zhao; qiushi guo;小王;汉王;冯米亚。可调节的等离子体 - 声子偏振子中的分层石墨烯 - 甲状腺氮化硼异质结构。acs光子学。2015,2,907-912。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。 二维材料用于纳米素化的应用。 纳米素化学。 2015,4,128-142。 [18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。 单层黑磷中高度各向异性和稳健的激子。 纳米技术。 2015,10,517-521。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。二维材料用于纳米素化的应用。纳米素化学。2015,4,128-142。[18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。单层黑磷中高度各向异性和稳健的激子。纳米技术。2015,10,517-521。
ns cc11-(th)-p01:生物分子,酶学和仪器生物分子:生命的化学基础 - 化学键合,涉及生物分子的力和构建块 - 大分子;信息大分子。蛋白质作为信息大分子;氨基酸的化学;多肽的一级,二级和三级结构;肽;肽亚基和第四纪结构, -helix,-薄片和胶原蛋白结构,蛋白质和氨基酸的代谢。碳水化合物的化学 - 单,二糖和多糖。DNA的分子结构,替代DNA结构,圆形和超螺旋DNA,DNA的变性和恢复,DNA的物理和化学稳定性。酶和反应动力学:酶的定义;活性位点,底物,辅酶,辅因子和不同种类的酶抑制剂;酶动力学,两种底物动力学,三种底物动力学,偏离线性动力学;配体结合研究;快速动力学;关联和解离常数;在酶动力学机理分析中使用同位素; pH,温度和同位素标记的底物对酶活性的影响;酶调节的变构模型;底物诱导酶的构象变化。电子显微镜:磁性和静电镜的理论及其焦距;电子显微镜的构造;限制分辨率和有用的放大倍数;对比形成;阴影和染色技术;扫描电子显微镜;标本准备技术;电子显微镜在细胞和分子生物学中的应用;嵌入和切割。仪器:生物系统光谱后的原理和应用:吸收光谱(UV-可见),荧光和磷光,圆形二色性(CD),红外光谱学(IR),共振拉曼光谱;电子旋转共振(ESR),液体闪烁计数器; pH计;超速离心,光学显微镜,光学显微镜;阶段,紫外线和干扰显微镜 - 其基本原理;光学系统和射线图 - 它们在细胞生物学中的应用;荧光显微镜;细胞和组织的微光照射法,荧光活化的细胞分辨率(FACS)。
半导体过渡金属二盐元素(TMDS)MX 2(M = MO,W; X = S,SE)的家族作为未来技术应用的最有希望的平台之一[1-4]。这些材料的确是存在许多自由度的特征(电荷,旋转,山谷,层,晶格,。。。),互相纠缠[5-11],开放了通过外部磁或电场以受控,灵活和可逆的方式调整电子/光学/磁/传输特性的可能性。在单层级别隔离时,这些化合物在布里渊区的高对称点K,k'的山谷中呈现直接带隙,如光致发光探针所示[5,7,12-12-15]。与石墨烯中一样,蜂窝状晶格结构反映在特殊的光学选择规则中,该规则在圆形偏振光下诱导给定山谷中有选择性的频带间光学转变。这种情况提示了“ Valleytronics”的概念,即在单个山谷中选择性地操纵自由度的可能性[13,14]。在单层化合物中广泛探索了TMD中的这种光敏性[2,4,8,16 - 30]。一种常见的工具是观察光学二色性,即左手或右圆极化光子上的不同光学响应。这些化合物相对于石墨烯的一个显着差异是存在强的自旋轨道耦合,该耦合提供了价带的相当大的自旋分解。在这种情况下,循环极化的光不仅与给定山谷有选择地结合,而且还与给定的自旋连接,在传导带中产生自旋偏振电荷,以及价带中的相反旋转电荷[4、8、8、16-23、26、26、26、27、29、29、31-36]。可以通过观察有限的Kerr或Faraday旋转来方便地研究光线和自旋种群之间的纠缠[37-39]。这些效应表明样品中存在固有磁场的存在,在单层TMD中,它们可以自然触发,这是由于圆形极化泵的结果[40],
液氮温度[3]或单个原子表现出极长的磁性松弛时间。[4-6]特别是,基于晚期兰烷基家族元素(如DID和TB)的系统在很大程度上是焦点,包括单分子[2,3]单原子,[4,5]或单链磁铁。[7,8] SMM在表面上的吸附允许研究单个分子单元,并实现用于在分子规模的旋转型或量子计算设备中实施SMM的运输方案。[9–17]然而,从大量到表面支持的系统的转换通常会随着SMM特性的实质变化甚至丧失,即磁矩,磁性抗溶剂或磁化行为。[18-21]在金属表面上,磁矩与表面的相互作用相当强,这可以通过近神经效应的观察来证明。[22,23]因此,在过去几年中,在底物上报道了表面吸附的SMM的磁性磁性的基准测量,在这些底物上,分子在电子上弱耦合到–TBPC 2上的hopg上的hopg上的tbpc 2,[24] [24]在mgo/ag(100)上[25]以及限制了限制/限制的限制,[26] blocke of light in limit conding of light of condect in limim conding nock in n opping bocke in [26] block ind bock ind bock ind offing bocke nock in n off ins [26]手,DYSC 2 N@C 80单层(111)[27]最近显示出在高达10 K的温度下进行的滞后开口。从这个意义上讲,据报道,lanthanide离子在C 80分子中包含在C 80分子中的大多数SMM,它们的化学鲁棒性和缓慢的磁性松弛的结合。第二需要提出适当的分子沉积方法,这些方法可从表面提供足够的SMM脱钩。[27–31]要进一步推动Monayer制度中的磁性生命周期,必须满足两个重要的标准:第一个要求是合成体积中表现出本质上高的T B的SMM化合物。在这项工作中,我们提供了有关在石墨烯/IR(111)表面上的DY 2 @C 80(CH 2 PH)中出色的慢速磁性松弛的实验证据。通过电喷雾沉积法沉积的DY 2 @c 80(CH 2 PH)分子被组织到岛上,如低温扫描隧道显微镜(STM)成像所示。我们通过X射线吸收光谱(XAS)和X射线磁性圆形二色性(XMCD)测量来探索它们的磁性特性。对Dy 2 @c 80(Ch 2 pH)吸附在石墨烯/IR(111)的磁性松弛行为的分析产生了