摘要。本文为二进制椭圆曲线提供了具体的量子密码分析,以实现时间效率的实现透视(即减少电路深度),并补充Banegas等人的先前研究,该研究的重点是空间效率的效率(即电路宽度)。为了实现深度优化,我们提出了改进Karatsuba乘数和基于FLT的反转的现有电路实现,然后在Qiskit Quantum Computer Simulator中构建和分析资源。提出的乘数架构,改善了Van Hoof等人的量子Karatsuba乘数,减少了与O(n log 2(3))界限的深度和较低的CNOT门,同时保持了相似数量的to效应和鸡蛋。此外,我们所证明的基于FLT的反演会减少CNOT数量和整体深度,并具有较高的量子量。最后,我们采用了拟议的乘数和基于FLT的IN-版本来执行二进制点添加的量子隐性分析以及用于椭圆曲线离散对数问题(ECDLP)的完整shor的算法。结果,除了减小深度外,与先前的工作相比,我们还能够降低多达90%的to oli门,从而显着改善,并提供对量子密码分析的新见解,以实现高度优化的实施。
摘要 — 训练神经网络以用于神经形态部署并非易事。已经提出了多种方法来调整适合训练的反向传播或类似反向传播的算法。考虑到这些网络通常具有与传统神经网络非常不同的性能特征,因此通常不清楚如何设置网络拓扑或超参数以实现最佳性能。在这项工作中,我们引入了一种贝叶斯方法来优化用于训练可部署到神经形态硬件的二进制通信网络的算法的超参数。我们表明,通过针对每个数据集优化此算法的超参数,我们可以在每个数据集上实现此算法比以前最先进的准确度的提高(高达 15%)。这种性能飞跃继续强调将传统神经网络转换为适用于神经形态硬件的二进制通信时的潜力。索引术语 — 超参数优化、神经网络、贝叶斯优化、神经形态
摘要 - 次数不受约束的二进制优化(QUBO)问题成为一种有吸引力且有价值的优化问题,因为它可以轻松地转换为各种其他组合优化问题,例如图形/数字分区,最大值,SAT,SAT,Vertex,Vertex,Vertex,TSP,TSP等。其中一些问题是NP-HARD,并广泛应用于行业和科学研究中。同时,已经发现Qubo与两个新兴的计算范式,神经形态计算和量子计算兼容,具有巨大的潜力,可以加快未来的优化求解器。在本文中,我们提出了一种新型的神经形态计算范式,该计算范式采用多个协作尖峰神经网络来解决QUBO问题。每个SNN进行局部随机梯度下降搜索,并定期分享全球最佳解决方案,以对Optima进行元效力搜索。我们模拟了模型,并将其与无协作的单个SNN求解器和多SNN求解器进行比较。通过对基准问题的测试,提出的方法被证明在寻找QUBO Optima方面更有效。具体来说,它在无协作和单SNN求解器的情况下分别在多SNN求解器上显示X10和X15-20加速。索引术语 - 数字计算,尖峰神经网络作品,组合优化,QUBO
摘要 — 神经形态计算机提供了低功耗、高效计算的机会。虽然它们主要应用于神经网络任务,但也有机会利用神经形态计算机的固有特性(低功耗、大规模并行、共置处理和内存)来执行非神经网络任务。在这里,我们演示了一种在神经形态计算机上执行稀疏二进制矩阵向量乘法的方法。我们描述了这种方法,它依赖于二进制矩阵向量乘法和广度优先搜索之间的联系,并介绍了以神经形态方式执行此计算的算法。我们在模拟中验证了该方法。最后,我们讨论了该算法的运行时间,并讨论了未来神经形态计算机在执行此计算时可能具有计算优势的地方。索引术语 — 神经形态计算、图算法、矩阵向量乘法、脉冲神经网络
这一问题自然出现在各个科学学科的许多应用中,例如图像压缩 [ 52 ]、潜在语义索引 [ 36 ]、社区检测 [ 48 ]、相关性聚类 [ 17 , 46 ] 和结构化主成分分析,例如参见 [ 38 , 37 ] 及其参考文献。从数学上讲,MaxQP s ( 1 ) 与计算矩阵的 ∞→ 1 范数密切相关。反过来,该范数与割范数密切相关(将 x ∈ {± 1 } n 替换为 x ∈ { 0 , 1 } n ),因为这两个范数之间的差只能为一个常数因子。这些范数是理论计算机科学中的一个重要概念 [ 24 , 3 , 2 ],因为诸如识别图中最大割( MaxCut )之类的问题可以自然地表述为这些范数的实例。这种联系凸显了在最坏的情况下,(1)式的最优解是 NP 难计算的
摘要 - 由于新通信标准的最新进展,例如5G新广播和5G,以及量子计算和通信中的新需求,因此出现了将处理器集成到节点的新要求。这些要求旨在在网络中提供灵活性,以降低运营成本并支持服务和负载平衡的多样性。他们还旨在将新的和经典算法集成到有效和通用平台中,执行特定操作,并参加延迟较低的任务。此外,对于便携式设备必不可少的一些加密算法(经典和量词后),与错误校正代码共享相同的算术。例如,高级加密标准(AES),椭圆曲线密码学,经典mceliece,锤击准循环和芦苇 - 固体代码使用GFð2mÞ算术。由于此算法是许多算法的基础,因此在这项工作中提出了一种多功能的RISC-V Galoisfald Isa扩展。使用Nexys A7 FPGA上的SWERV-EL2 1.3实现并验证了RISC-V指令集扩展名。此外,对于AE,芦苇 - 固体代码和经典的McEliece(Quantum Pryptography),还达到了五次加速度,以增加逻辑利用率增加1.27%。
摘要 - 成功的运动象征脑 - 计算机界面(MI-BCI)算法要么提取大量手工制作的功能,要么训练分类器,要么在深度卷积的卷积新神经网络(CNNS)内组合特征伸缩和分类。这两种方法通常都会导致一组实用值的权重,在针对紧密资源约束设备上实时执行时会构成挑战。我们为每种方法提出了方法,允许将实价的权重转换为有效推断的二进制数字。我们的第一个方法基于稀疏的躁郁症随机投影,将大量的真实价值的Riemannian协方差投射到二进制空间,在该空间中,也可以通过二进制重量来学习线性SVM分类器。通过调整二进制嵌入的尺寸,我们与具有浅色oat16权重的型号相比,在4级MI(≤1.27%)中达到了几乎相同的精度,但提供了更紧凑的模型,具有更简单的操作以执行。第二,我们建议使用内存增强的神经网络(MANN)进行Mi-BCI,以使增强的内存被二进制。我们的方法使用双极随机投影或学习的投影替换了完全连接的CNN层。我们对Mi-BCI已经紧凑的CNN EEGNET的实验结果表明,使用随机投影可以通过1.28×at in ISO精度将其压缩。另一方面,使用学习的投影可提供3.89%的精度,但记忆尺寸增加了28.10倍。
分布式集成模块化航空电子设备 (DIMA) 是飞机航空电子设备中一个很有前途的概念。飞机系统共享资源,如计算能力、内存和传感器/执行器接口。资源由通用设备提供,这些设备可以安装在飞机的分布式位置。然而,由于规模和复杂性,如果手动进行,有效和最佳地设计此类系统是一项艰巨的任务。通过将架构设计的子任务作为数学优化问题来解决,展示了如何支持这项艰巨的任务。软件映射和设备安装的分配问题都被表述为二进制整数程序。这些用于优化航空电子架构的全部或部分,以实现某些目标,例如质量和运营中断成本,同时考虑所有资源和次要系统要求。提出了一种合适的全局最优求解器来解决由此产生的组合优化问题,这些问题在复杂性和规模上都具有挑战性。通过由四个冗余飞机系统组成的参考架构展示了所提出方法的潜力。与手动映射相比,这揭示了高达 45% 的优化潜力,而计算时间保持在一分钟以下。
• Bypass capacitor placement – Place near the positive supply terminal of the device – Provide an electrically short ground return path – Use wide traces to minimize impedance – Keep the device, capacitors, and traces on the same side of the board whenever possible • Signal trace geometry – 8mil to 12mil trace width – Lengths less than 12cm to minimize transmission line effects – Avoid 90° corners for signal traces – Use an unbroken ground plane在信号迹线下方 - 带有地面的信号迹线周围的洪水填充区域 - 对于超过12厘米的迹线•使用阻抗控制的迹线•源 - 端端使用输出附近的串联阻尼电阻器•避免分支;缓冲信号必须单独分支
开发使NRD技术成熟,并宣布非辐射电介质(NRD)波导是紧凑型毫米波电路应用程序1,2,3,4,5,6,7,8的最有吸引力的基础。NRD指南是毫米波集成电路的有前途的平台。具有各种功能的电路元素的研究,开发和设计尚不能力。经过广泛的研究,由于结构性和其他局限性的波导特性,具有非辐射传递和宽带的紧凑电路仍然很难。但是,NRD平台确保了所有这些磨石在一个地方,例如低成本,低辐射损失,高传输效率和宽带宽度。到目前为止,已经提出了基于NRD的几毫米波电路组件,其中包括定向耦合器,过滤器,循环器和天线9,10,11。仍然,在广泛的频段中尚未讨论许多具有不同功能的NRD指南组件。