计算机使用 0 和 1 的语言,本质上是向称为晶体管的计算机部件发送开启和关闭信号。这些 0 和 1 已被翻译成称为 ASCII 二进制代码的代码,其中每个字母、数字和字符都有 8 位 0 和 1 的组合。ASCII 是计算机和互联网文本文件的最常见格式。它代表美国信息交换标准代码,使用数字来表示字母和特殊字符。二进制版本仅使用 8 位(或数字)模式中的 0 和 1。
摘要 - 成功的运动象征脑 - 计算机界面(MI-BCI)算法要么提取大量手工制作的功能,要么训练分类器,要么在深度卷积的卷积新神经网络(CNNS)内组合特征伸缩和分类。这两种方法通常都会导致一组实用值的权重,在针对紧密资源约束设备上实时执行时会构成挑战。我们为每种方法提出了方法,允许将实价的权重转换为有效推断的二进制数字。我们的第一个方法基于稀疏的躁郁症随机投影,将大量的真实价值的Riemannian协方差投射到二进制空间,在该空间中,也可以通过二进制重量来学习线性SVM分类器。通过调整二进制嵌入的尺寸,我们与具有浅色oat16权重的型号相比,在4级MI(≤1.27%)中达到了几乎相同的精度,但提供了更紧凑的模型,具有更简单的操作以执行。第二,我们建议使用内存增强的神经网络(MANN)进行Mi-BCI,以使增强的内存被二进制。我们的方法使用双极随机投影或学习的投影替换了完全连接的CNN层。我们对Mi-BCI已经紧凑的CNN EEGNET的实验结果表明,使用随机投影可以通过1.28×at in ISO精度将其压缩。另一方面,使用学习的投影可提供3.89%的精度,但记忆尺寸增加了28.10倍。
摘要 — 训练神经网络以用于神经形态部署并非易事。已经提出了多种方法来调整适合训练的反向传播或类似反向传播的算法。考虑到这些网络通常具有与传统神经网络非常不同的性能特征,因此通常不清楚如何设置网络拓扑或超参数以实现最佳性能。在这项工作中,我们引入了一种贝叶斯方法来优化用于训练可部署到神经形态硬件的二进制通信网络的算法的超参数。我们表明,通过针对每个数据集优化此算法的超参数,我们可以在每个数据集上实现此算法比以前最先进的准确度的提高(高达 15%)。这种性能飞跃继续强调将传统神经网络转换为适用于神经形态硬件的二进制通信时的潜力。索引术语 — 超参数优化、神经网络、贝叶斯优化、神经形态
通过利用其他信息,例如(部分)错误堆栈跟踪,补丁或风险操作的操作,的指示模糊着重于自动测试代码的特定部分。 关键应用程序包括错误复制,补丁测试和静态分析报告验证。 最近有指示的模糊引起了很多关注,但诸如无用后(UAF)之类的难以检测的漏洞仍未得到很好的解决,尤其是在二进制层面上。 我们提出了UAF UZZ,这是第一个(二进制级)定向的灰色fuzzer,该灰盒源自UAF错误。 该技术采用了针对UAF指定的量身定制的模糊引擎,轻质代码仪器和有效的错误分类步骤。 对实际情况的错误复制的实验评估表明,就故障检测率,暴露时间和虫子三叶虫的时间而言,UAZ的UZZ明显优于最先进的指示fuzz。 uaf uzz也已被证明在补丁测试中有效,从而在Perl,GPAC和GNU补丁等程序中发现了30个新错误(7 CVE)。 最后,我们向社区提供了一个巨大的模糊基准,该基准专用于UAF,并建立在真实的代码和实际错误上。的指示模糊着重于自动测试代码的特定部分。关键应用程序包括错误复制,补丁测试和静态分析报告验证。最近有指示的模糊引起了很多关注,但诸如无用后(UAF)之类的难以检测的漏洞仍未得到很好的解决,尤其是在二进制层面上。我们提出了UAF UZZ,这是第一个(二进制级)定向的灰色fuzzer,该灰盒源自UAF错误。该技术采用了针对UAF指定的量身定制的模糊引擎,轻质代码仪器和有效的错误分类步骤。对实际情况的错误复制的实验评估表明,就故障检测率,暴露时间和虫子三叶虫的时间而言,UAZ的UZZ明显优于最先进的指示fuzz。uaf uzz也已被证明在补丁测试中有效,从而在Perl,GPAC和GNU补丁等程序中发现了30个新错误(7 CVE)。最后,我们向社区提供了一个巨大的模糊基准,该基准专用于UAF,并建立在真实的代码和实际错误上。
I. 引言 在许多 VLSI 系统中,二进制计数器是基本构建块。𝑛 位二进制计数器由一系列 𝑛 触发器组成,其计数值可以是 0 到(2 n −1)[1]。在为各种应用设计高速、低功耗数字系统时,低功耗快速二进制计数器设计是关注的基本点。调度中进程分配的计数时间可用作时钟分频器(用于片上处理器,因为有时处理器的工作频率低于处理器的实际频率)。二进制计数器广泛用于单斜率或双斜率模数转换器 (ADC)。在这种情况下,在每个时钟脉冲上递增的同步计数器对应于上升和下降斜坡发生器采样的模拟信号,其值进一步输入数模转换器 (DAC) 以创建其模拟值 [2-5]。在数字锁相环 (DPLL) 中,时间数字转换器 (TDC) 用作相位检测器,其中 TDC 由加减计数器组成。它用于捕获分数压控振荡器 (VCO) 的信息,以提高频率检测的准确性 [6-13]。计数器模块用于设计电子产品代码 (EPC) Gen-2 标准中 LFSR 的变量,用于各种安全问题中的超高频或射频识别 [14]。高速二进制计数器用于计数光子计数相机中的光子数 [15]。在现代自动化技术中,某些事件非常快,无法在程序周期中检测到。为了检测这种高速事件,引入了一个新的技术术语,即高速计数器 (HSC)。在每转只有一个或几个脉冲的情况下,HSC 在确定旋转运动速度时非常有用。这种 HSC 的一部分适用于自动化、过程控制、
设计并实现了一款 4 位二进制加权电流控制 DAC,该 DAC 采用了适合生物医学应用的各种开关方法。虽然这种架构占用的数字面积和功率较小,但容易出现故障,尤其是在输入转换次数较多时。作者计算了具有各种开关的 4 位二进制电流控制 DAC 的 INL 和 DNL:NMOS、PMOS 和传输门 [9, 12]。DAC 的评估基于各种参数,如分辨率、功耗、稳定时间、动态范围、非线性误差 (INL 和 DNL)。本文重点介绍 INL 和 DNL。差分非线性(缩写 DNL)表示实际步长相对于理想步长的偏差,其中步长是相邻输入值的模拟输出差 [6, 10]。DAC 的 DNL 在数学上表示如下:
b"其中 | z \xe2\x9f\xa9 = D ( z ) | 0 \xe2\x9f\xa9 是一个与真空态 | 0 \xe2\x9f\xa9 相关的相干态,通过位移算子 D ( z ) = exp \xe2\x88\x92 za \xe2\x80\xa0 \xe2\x88\x92 \xc2\xaf za 表示 Heisenberg\xe2\x80\x93Weyl 代数 [ a , a \xe2\x80\xa0 ] = 1 [ 6 ]。我们注意到,该提议看似简单,但代价是“字母”的非正交性,即 tr ( \xcf\x81 0 \xcf\x81 1 ) \xcc\xb8 = 0,导致它们的可区分性受到限制。由于相干态不需要非线性介质来产生,因此与早期利用压缩态 [ 7 ] 且要求“硬”非线性相比,使用相干态似乎更具优势 [ 3 ]。然而,实验技术的最新进展可能会扭转这一趋势,至少在超越标准相干态变得有利的情况下。以薛定谔猫态作为正交字母表状态的候选者为例 [ 1 ]。这项研究的目的是给出一个由 Gazeau\xe2\x80\x93Klauder 相干态组成的字母表候选者的例子 [ 8 ]。我们分析了与配备了克尔介质典型的多项式非线性的振荡器相关的 Gazeau\xe2\x80\x93Klauder 状态的二进制通信。已经针对各种量子系统研究了 Gazeau\xe2\x80\x93Klauder 相干态:单模”
近年来,国家支持的项目试图提高残疾人的社会参与度。然而,即使是患有运动神经元疾病 (MND)、全滑行状态 (TSD) 等神经肌肉疾病的人,其沟通能力也会受到干扰。脑机接口 (BBA) 已有几十年的历史,研究数量呈指数级增长,目前正在开发中,以使患有此类疾病的人能够与周围环境进行交流。拼写系统是 BBA 系统,它可以检测人们在屏幕上的字母和数字矩阵上关注的字母,并通过应用程序将其转换为文本。在这种情况下,通过屏幕上字母的随机闪烁,它旨在检测由于刺激而导致大脑中发生的电变化。研究表明,个体遇到的刺激会导致 EEG 信号中出现一个振幅,称为 P300,介于 250 到 500 毫秒之间。脑机接口通过 EEG 信号为因中风或神经退行性疾病而行动受限的个体提供环境互动。 EEG 信号的多通道结构既增加了系统成本,又降低了处理速度。因此,通过在过程中检测更多活动电极来降低系统成本,可以提高人们的可访问性。在此背景下,在电极选择中使用优化技术,通过随机选择方法确定最有效的通道。在研究中,使用基于群体的优化技术之一的粒子群优化算法与两个分类器(SVM 和 Boosted Tree)一起使用,并确定了八个最常选择的通道,以提高系统在速度和准确性方面的性能。
使用隔离电源推挽驱动器 SN6501DBV 生成 MCU、数字隔离器和用于感测二进制输入的信号调节电路的隔离电源。本应用使用的变压器是 750313638。选择的变压器封装具有 > 5 kV 的隔离电压。选择更大的变压器封装便于轻松迁移到增强型隔离器。齐纳二极管 PTZTE253.9B 用于保护电源免受过压和 ESD 的影响。隔离电源采用单个 3.3 V 输入运行。主机接口为二进制模块运行提供所需的电源。LDO TPS70933DBVT 用于改善 ADC 动态范围和输出电源电压的准确性。
Telemetry Data Processing: CCSDS Telemetry Packet Standard Raw Data, Sub-channels, Derived Parameters, Calibration, Out-of-Limit Checks Multiple Archive Files & Retrieval Sources, Automatic Backups, Data Extractions Memory Dumps, Custom Buffer Processing, Scheduled FTP Transfers Telemetry Events (On-the-fly mathematical Expressions) Triggered遥测报告,自动分发(通过电子邮件或FTP)复杂的通知(电话,电话,电子邮件,传真,PAGER,PAGERS,FTP)第三方软件的自动化(JScript.NET®)自动化(JScript.NET®)实时或历史遥测数据的导出