● Head Office: Canada, founded in 2006 ● Branch Offices: CBS Japan (2006) & CBS Europe (2020) ● Additionally: We provide specialized tools for opto-mechanical simulation (FRED) and optical measurement systems (opsira) to support the full optical development cycle ● Today's Presenter: Tom Davies, COO
摘要,由于基于化石的材料引起的环境问题,从生物基础资源中开发了可持续材料。木质素是一种化学复杂的生物聚合物,存在于血管植物的木质组织中。木质素具有许多有用的特性,例如抗氧化活性,热稳定性,紫外线吸收性,刚度等。然而,木质素的固有挑战与其复杂的分子结构以及在水和常见溶剂中的溶解度差有关。一种利用木质素的一种策略是制造木质素纳米颗粒(LNP),以在水中产生胶体稳定的分散体。本论文旨在开发基于LNP的材料,这些材料可用于光子晶体和光热膜用于节能功能材料。论文的第一部分重点是阐明在LNP-Photonic Crystal(L-PC)的离心辅助组装过程中发生的现象。L-PC。在后续工作中,开发了一种改进的方法来提高L-PC的产量。研究了诸如初始木质素浓度以及稀释时间对粒径和稀释时间的影响,并研究了形成的LNP的PDI。经验模型以预测LNP的大小,并成功用于控制L-PC的颜色。此外,研究了L-PC的纳米结构。LNP-Chitosan膜和涂料并将其应用于室内热管理。将LNP含量从10到40 wt%调节。在论文的第二部分中开发了木质素吸收太阳能(光波长:250–2500 nm),基于LNP的复合膜和具有光热性能的涂层的能力。通过合并LNP,与纯壳聚糖膜相比,膜的机械强度和光热性能得到了改善。此外,通过使用LNP作为还原剂制备LNP-Silver-Chitosan(CC-AG@LNP)膜。用紫外线辅助在LNP的表面降低了银离子,并使用杂交纳米颗粒来通过铸造来制备膜。CC-AG@LNP膜表现出改善的湿势,并针对大肠杆菌表现出抗菌性能(灭菌作用> 99.9%)。总的来说,本文既有助于木质素聚集的基本见解,又有助于胶体颗粒的胶合颗粒,并展示了控制其组装并掺入具有附加功能的宏观材料中的方法。
戴安·王(Dian Wang)。基于光伏能量的微电网,用于为电动汽车站充电:与智能电网通信的充电和放电管理策略。电力。Decologie deCompiègne大学,2021年。英语。nnt:2021 comp2584。tel-03292806
2单晶薄膜合成10 2.1底物上的薄膜生长。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.1空间有限生长-SLG。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.2空化引发了不对法的结晶-CTAC(97)。。。。。。。。。。。。。。。。12 2.1.3外延生长。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.1.4转换方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.2独立的薄膜。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.2.1表面张力控制的ITC(98)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.2.2来自散装晶体。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 13 2.3图案薄膜和晶体阵列。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 13 2.3.1构造的生长。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。13 2.2.2来自散装晶体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.3图案薄膜和晶体阵列。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.3.1构造的生长。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>14 2.3.22222外延生长。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 2.3.3打印。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16 2.4生长方法的摘要。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。17
摘要 本研究使用具有平面扫描功能的电光 (EO) 传感器演示了基于光子学的 300 GHz 频段近场测量和远场特性分析。待测场在 EO 传感器处上变频至光域 (1550 nm),并通过光纤传送至测量系统。在 13 s 的一维测量时间内,系统的典型相位漂移为 0.46 ◦,小于该时间尺度下相位测量的标准偏差 1.2 ◦。将从测得的近场分布计算出的喇叭天线远场方向图与使用矢量网络分析仪通过直接远场测量系统测得的远场方向图进行了比较。对于与角度相关的参数,我们通过近场测量获得的结果的精度与通过直接远场测量获得的结果相当。我们的近场测量结果与直接远场测量结果之间的旁瓣电平差异(约 1 dB)归因于探针校正数据的过量噪声。我们相信,基于光子学的球形 EO 探针扫描近场测量将为 300 GHz 频段高增益天线的表征铺平道路。
Oussama Baaloudj、Nhu-Nang Vu、Aymen Amine Assadi、Le van Quyet、Phuong Nguyen-Tri。设计和开发用于光催化应用的高效硅铅矿基材料的最新进展。胶体和界面科学进展,2024 年,第 327 页,第 103136 页。�10.1016/j.cis.2024.103136�。�hal- 04529271�
演变图(n = 3)。d)37°C 胶原酶溶液中的酶促材料降解(n = 3)。e、f、g、h)光交联后不同水凝胶配方(分别为 40 DoM、60 DoM、80 DoM、100 DoM)的流变频率扫描(0.1 至 100 Hz)(n = 3)。i、j、k、l)根据独立水凝胶材料的频率扫描计算出的 Tan delta(n = 3)。m) 使用不同水凝胶配方的圆形体积打印模型的归一化形状保真度(n = 3)。n) 使用预期的 STL 模型进行形状保真度计算的体积打印模型作为比较,比例尺 = 5 毫米。o、p) 混合 60 DoM 水凝胶的 CAD 模型和光片重建,分别显示东岛雕像和陀螺模型,比例尺 = 2 毫米。
四元铜银铋碘化合物代表了一类有前途的新型宽带隙 (2 eV) 半导体,可用于光伏和光电探测器应用。本研究利用气相共蒸发法制造 Cu 2 AgBiI 6 薄膜和光伏器件。研究结果表明,气相沉积薄膜的性质高度依赖于加工温度,表现出针孔密度增加,并根据沉积后退火温度转变为四元、二元和金属相的混合物。这种相变伴随着光致发光 (PL) 强度和载流子寿命的增强,以及在高能量 (≈ 3 eV) 下出现额外的吸收峰。通常,PL 增加是太阳能吸收材料的理想特性,但 PL 的这种变化归因于 CuI 杂质域的形成,其缺陷介导的光学跃迁决定了薄膜的发射特性。通过光泵太赫兹探测光谱法,揭示了 CuI 杂质阻碍了 Cu 2 AgBiI 6 薄膜中的载流子传输。还揭示了 Cu 2 AgBiI 6 材料的主要性能限制是电子扩散长度短。总体而言,这些发现为解决铜银铋碘化物材料中的关键问题铺平了道路,并指明了开发环境兼容的宽带隙半导体的策略。
“如果母亲被开明,被教导,您已经观察到,您可以在她面前进行示威;然后您可以做到,然后您可以在您的面前做示威,然后您确定这位母亲在理解参与的重要性后会这样做。” (MOH 001)“这并不容易,因为您不知道当您为他们留下补充剂时会发生什么,您无法确定母亲是否给予了它。,也许当您留给他们时,他们会想品尝一下它的样子,有时她的另一个孩子可以解开它,所以当您离开它时,我们不确定他们是否会给它,因为即使使用药物,他们也会给您提供一些母亲,您会发现有些母亲不给他们的孩子不给他们的孩子,这就是我们的原因,这就是我们的原因,并确保所有的孩子都会得到所有的夫人(peer nake naver to the Face the Face the Face the Ackity