,伊朗B加拿大B加拿大伊朗B加拿大气候变化与适应中心,爱德华王子岛大学,加拿大PE,圣彼得斯湾,c,加拿大PE,CANAHID CHANRAN UNICACTION of CANDAD 64001,伊拉克E UNISQ学院,昆士兰州南部大学,昆士兰州4350,澳大利亚,可持续设计工程学院,爱德华王子王子大学,夏洛特镇,夏洛特镇,PE C1A4P3,加拿大G水工程系印度I工程系,达尔豪斯大学,特鲁罗大学,北卡罗来纳州B2N 5E3,加拿大J公民与环境工程系,国王法赫德大学石油和矿业大学,沙特阿拉伯31261,阿拉伯语,阿拉伯沙特阿拉伯,伊朗B加拿大B加拿大伊朗B加拿大气候变化与适应中心,爱德华王子岛大学,加拿大PE,圣彼得斯湾,c,加拿大PE,CANAHID CHANRAN UNICACTION of CANDAD 64001,伊拉克E UNISQ学院,昆士兰州南部大学,昆士兰州4350,澳大利亚,可持续设计工程学院,爱德华王子王子大学,夏洛特镇,夏洛特镇,PE C1A4P3,加拿大G水工程系印度I工程系,达尔豪斯大学,特鲁罗大学,北卡罗来纳州B2N 5E3,加拿大J公民与环境工程系,国王法赫德大学石油和矿业大学,沙特阿拉伯31261,阿拉伯语,阿拉伯沙特阿拉伯,伊朗B加拿大B加拿大伊朗B加拿大气候变化与适应中心,爱德华王子岛大学,加拿大PE,圣彼得斯湾,c,加拿大PE,CANAHID CHANRAN UNICACTION of CANDAD 64001,伊拉克E UNISQ学院,昆士兰州南部大学,昆士兰州4350,澳大利亚,可持续设计工程学院,爱德华王子王子大学,夏洛特镇,夏洛特镇,PE C1A4P3,加拿大G水工程系印度I工程系,达尔豪斯大学,特鲁罗大学,北卡罗来纳州B2N 5E3,加拿大J公民与环境工程系,国王法赫德大学石油和矿业大学,沙特阿拉伯31261,阿拉伯语,阿拉伯沙特阿拉伯
确保足够数量的高质量幼虫的可用性仍然是水产养殖阶段的重要瓶颈。在过去的一个世纪中,已经探索了各种幼虫阶段的替代饮食解决方案,包括细菌,微藻糊,酵母和各种惰性微粒,尽管结果不一致。本综述旨在讨论益生菌在微循环中的创新整合,突出显示封装,涂料和发酵技术以推动水产养殖生产率。微法经常富含营养且易于以粉状或液体形式吸收,在幼虫鱼营养中起着至关重要的作用。可以将这些分类为微封装,干燥,液体和活饲料。微鳍的选择是关键,可确保针对每个幼虫阶段量身定制的吸引力,消化率和水稳定性。由于益生菌在水产养殖中的潜力增强,增强疾病耐药性和提高水质的潜力,其给药方法已经多样化。益生菌可以通过直接浸入和浴处理对生物氟氟氯洛克系统和饲料添加剂进行管理。结果表明,与益生菌合并的微局面对水产养殖业有积极的影响。
当前任务的规模意味着,仅依靠公共资源不太可能支持各国在适应气候和恢复水系统方面的优先事项,特别是那些公共投资水平历来较低的国家。鉴于新冠疫情以来政府资金受到限制、大宗商品价格冲击、汇率波动以及许多发展中经济体本已高企的债务水平,吸引私人资本和创新来建设更具恢复力的水系统变得越来越重要。将这一融资缺口转化为私营部门的机会也有助于提高效率,增加创新技术和服务的部署——例如太阳能滴灌——从而提高水系统的气候适应力和可持续性。
近年来,我们看到航天工业发生了重大变化,每年发射的卫星数量比以往任何时候都多。据预测,到本世纪末,将有 4.5 倍的航天器被送入太空,这将带来各种挑战 [1]。为了满足日益增长的需求,每颗卫星的生产成本必须降低,而卫星数量的增加将导致必须更频繁地执行防撞机动。这也意味着更多的航天器将需要推进系统来确保安全运行并确保遵守《欧洲空间碎片减缓行为准则》。截至目前,大多数推进系统都在使用肼及其衍生物等剧毒推进剂,因此在处理推进系统组件时需要采取广泛的安全措施。这使得新设备的开发以及现有设备的测试和集成变得复杂,因此成本高昂。即使是电力推进系统也经常依赖氙气等稀缺气体,而氙气的年产量有限,因此推进剂成本对整个推进系统成本有重大影响。这种情况和许多其他原因正在推动人们不断寻找使用绿色推进剂的替代解决方案。最有前途的绿色推进技术之一是水电解推进 (WEP) [ 2 ] [ 3 ]。在这种系统中,航天器在地面上用纯净水代替传统的高反应性推进剂填充。进入太空后,电解器用于将水分解成氢气和氧气。产生的气体随后可储存在较小的中间罐中,或直接用于化学或电动推进器以推动航天器。欧洲的几家公司和大学目前正在开发这项技术,而两个关键部件是推进器和电解器。到目前为止,只有少数电解器曾被发射到太空。
Nicolas Guibert 1,Kylian Trepat 2.3,Bruno Pozzetto 2.4,Laurence Josset 2.5,6,Jean-BaptisteFassier仰,OmranAllatif²,KahinaSaker³,Karen Brengel-Pesce³ Lyon-Cavid研究小组1.在里昂,克劳德·伯纳德·里昂1大学的职业健康与医学系,古斯塔夫·艾菲尔·伊夫斯塔尔大学,UMRESTTE,UMR T_9405,里昂大学,里昂,法国里昂,2。CIRI-里昂大学国际感染学研究中心,克劳德·伯纳德·里昂1,Inserm,U1111,CNRS,UMR5308,Ens Lyon,Jean Monnet Saint -Etienne,Lyon,Lyon,Lyon,Lyon,France 3。Lyon-Biomérieux的联合研究部门,Lyon Lyon,Lyon SUD医院,法国Pierre-Bénite,Lyon Binostices de Lyon 4.法国圣泰恩大学大学医院传染和卫生特工实验室5.病毒学实验室,传染病学院,实验室,与国家呼吸道病毒参考中心,法国里昂里昂的民用临终关怀中心有关。6。Genepii测序平台,传染病学院,民用临终关怀中心,里昂,法国里昂7。卫生服务,流行病学,感染和预防,ÉdouardHerriot医院,法国里昂里昂的民用临终关怀医院8.项目组的成员在文章末尾得到确认
抽象溺水是一个重要的公共健康问题。视频溺水检测算法是找到溺水受害者的有用工具。但是,溺水研究研究的三个挑战通常会遇到:缺乏实际的溺水视频数据,微妙的早期溺水特征以及缺乏实时时间。在本文中,作者提出了一个水下计算机视觉的溺水检测装置,该检测设备由嵌入式AI设备,相机和防水外壳组成,以解决上述问题。检测设备利用Jetson Nano的高性能计算通过在获得的水下视频流中提出的溺水检测算法实现溺水事件的实时检测。所提出的溺水检测算法主要由两个阶段组成:在第一步中,成功地解决了周围环境的干扰,并为视频溺水检测提供了值得信赖的基础,Yolov5N网络用于根据溺水者的特征来检测近事实的人体。在第二阶段,作者提出了一个基于深层高斯模型,用于快速特征向量检测。轻巧的DDN与高斯模型相结合,以检测高级语义特征的异常,该功能具有更高的鲁棒性,并解决了缺乏溺水视频的缺乏。实验结果表明,所提出的溺水检测算法具有良好的全面性能和实际应用值。
摘要:网络攻击检测技术今天起着至关重要的作用,因为网络攻击一直对组织和个人造成巨大伤害和损失。功能选择是许多网络攻击系统的必要步骤,因为它可以降低培训成本,提高检测性能并使检测系统轻量级。已经提出了与网络攻击检测特征选择相关的许多技术,并且每种技术都有优点和缺点。确定应该选择哪种技术对于许多研究人员和系统开发人员来说是一个具有挑战性的问题,尽管在网络安全领域中有几篇有关特征选择技术的调查论文,但其中大多数人试图成为无所不包的问题,并且过于笼统,并且太普遍了,这使得读者很难掌握该方法的混合和全面图像。在本文中,我们第一次详细介绍了基于过滤器的特征选择技术。基于过滤器的技术是一种流行的特征选择技术,并且在研究和应用中广泛使用。除了对这种方法的一般描述外,我们还详细解释了搜索算法和相关性措施,这是基于滤波器的技术中常用的两个必要的技术元素。
电能存储是大规模部署和整合风能、太阳能等可再生但间歇性能源的重要组成部分。[1] 液流电池 (RFB) 是一种很有前途的电网级储能技术,由于其可扩展性高、放电时间长、储能与发电分离以及运行固有安全等特点,为深度脱碳提供了许多高价值机会。[2] 传统的液流电池采用低丰度金属离子氧化还原对,如钒,这与技术挑战有关,包括相对较低的能量密度以及高成本和环境问题,限制了它们广泛的商业成功。 [2–4] 近来,有机和有机金属氧化还原活性材料,如醌、[5] 吩嗪、[6] 氮氧自由基、[7] 紫精、[7,8] 芴酮、[9] 有机铁配合物、[10,11] 及其
水库区域通常容易出现地质灾难,因为水文地质环境发生了重大变化(Zhou等,2022a)。例如,中国的三个峡谷水库地区已经报道了5,000多个地质灾难。极端气候和人类工程活动加剧了该水库地区地质灾难的发生,对当地居民和船只构成威胁。地质灾难的定量风险分析可以有效地支持管理人员制定预防灾难和缓解策略。由于变形和故障机制的复杂性,在各种时空量表上,定量分析和储层地质灾害的定量分析和预测中仍然存在许多未解决的问题。最近,随着新技术的开发和应用,例如岩土测试,遥感,机器学习和数值模拟,储层地质灾难的定量风险分析方法取得了巨大进步(Tang等,2019; Zhou等,2022b; Wang等,2022)。关于“水库地区地质灾难的定量风险分析的进步”的研究主题在滑坡风险分析领域已有七项贡献,包括使用高级技术,风险预测工具和实验室测试在滑坡易于区域的地形测试。
放松复制起源和DNA解旋酶的负载是染色体复制的启动。在大肠杆菌中,最小起源oric包含一个双链放松元素(欠款)区域和结合起始蛋白DNAA的三个(左,中和右)区域。左/右区域带有一组DNAA结合序列,构成了左/右DNAA子复合物,而中间区域具有一个单个DNAA结合位点,该位点刺激了左/右DNAA亚复合物的锻炼。此外,群集元素(tattaaaaagaa)位于最小oric区域外。左DNAA子复合物促进了由于暴露TT [A/G] T(T)序列的放松,然后结合到左DNAA亚复合物,稳定DNAB Helicase载荷所需的未能状态。然而,右DNAA亚复合物的作用在很大程度上不清楚。在这里,我们表明,左/右DNAA子复合物的应有的放松,而不是仅由左DNAA子复合物,这是由应有的末端次区域刺激的。一致地,我们发现了右DNAA子复合物 - 绑定的单链应育成区域和群集区域。此外,左/右DNAA子复合物独立地结合了DNAB解旋酶。仅对于左DNAA子复合物,我们表明该群集对于DNAB加载至关重要。体内数据进一步支持了右DNAA子复合物的Unwound DNA结合的作用。综上所述,我们提出了一个模型,其中右DNAA子复杂与UNWOUND应变动态相互作用,有助于适当的放松和有效的DNAB解旋酶负载,而在没有Right-DNAA子复杂性的情况下,在这些过程中没有在这些过程中进行群集的辅助,以支持重复的鲁棒性。