ptb.de › 于 2020 年 10 月 20 日上传 PDF — 2020 年 10 月 20 日 METROLOGY全局Thomas Engel 博士 /CT RDA IOT ... 国家计量研究所 ...大规模传感器网络的架构云层
ptb.de › 于 2020 年 10 月 20 日上传 PDF — 2020 年 10 月 20 日 METROLOGY全局Thomas Engel 博士 /CT RDA IOT ... 国家计量研究所 ...大规模传感器网络的架构云层
研究人员深入了解植被和土壤表面水分如何变化。 • L 波段合成孔径雷达(L 波段 SAR): “L” 表示信号波长,约为 9 英寸(24 厘米)。L 波段 SAR 可以透过云层和森林冠层的树叶,这些可能会遮挡其他类型仪器的视线。 • S 波段合成孔径雷达(S 波段 SAR): “S” 表示信号波长接近 4 英寸(9 厘米)。S 波段 SAR 能够透过云层和轻质植物覆盖,但它不能像 L 波段 SAR 信号那样穿透茂密的植被。 • 天线反射器:天线反射器呈鼓形,安装在 30 英尺长(9 米长)的吊杆上,是 NASA 有史以来在太空部署的最大的天线反射器,直径近 40 英尺(12 米)。反射器由镀金金属丝网制成,用于聚焦合成孔径雷达发送和接收的信号。发射时,雷达信号被发送到反射器,然后
当飞机飞过 10,100 英尺,到达 GHOREPANI 前 5 英里处时,机长表示云层仍然存在,因此建议副驾驶继续爬升至 12,000 英尺,并告知他们将冒险飞到 TATOPANI,然后再决定是继续飞行还是改道。02:14:50,当飞机飞过 GHOREPANI 区域 11,500 英尺时,EGPWS 地形警报和 02:14:52 PULL UP 警告出现,但飞机无法看到他们,02:15:01 表示飞机可以看到他们,警告于 02:14:53 停止。02:15:27,机长指示副驾驶保持航向 330 和略低于云层的飞行高度,之后开始小幅下降。这时机长询问副驾驶,他的一侧是否能看见,副驾驶回答说能看见一点。机长随后指示副驾驶下降至 10,000 英尺。当飞机于 02:15:55 开始下降,经过 11,000 英尺后,机舱内响起了超速警告,持续了 2 秒,此时速度达到 152 节。
通过 FLIR 系统识别威胁极其困难。虽然 AH-64 机组人员可以轻松找到车辆的热信号,但可能无法确定敌友。前视红外线可检测物体热量发射的差异。在炎热的天气里,地面反射或发射的热量可能比可疑目标多。在这种情况下,环境会很“热”,而目标会很“冷”。随着夜间空气冷却,目标散热或散热的速度可能低于周围环境。在某些时候,目标和周围环境的热量发射可能相等。这是红外交叉,使目标捕获/检测变得困难甚至不可能。红外交叉最常发生在环境潮湿的时候。这是因为空气中的水在物体的发射率中形成了一个缓冲。所有使用 FLIR 进行目标捕获的系统都存在此限制。低云层可能不允许地狱火导引头有足够的时间锁定目标,或可能导致其在捕获后断开锁定。在远距离,飞行员可能必须考虑云层,以便让导引头有时间将武器转向目标。飞行员夜视传感器无法检测到电线或其他小障碍物。
摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。vi 2003 年地球观测峰会宣言强调了持续、长期监测地球气候的重要性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 扩展摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.....2 1.背景、目标和范围 ................。。。。。。。。。。。。。。。。。。。。。。。。.............19 2.总体原则 .........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....24 3.气候变量所需的绝对精度和长期稳定性 ..............34 3.1 太阳辐照度、地球辐射预算和云层 ...............................35 3.2 大气变量 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 3.3 表面变量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。49 4.将气候数据集精度和稳定性转换为卫星仪器精度和稳定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 4.1 太阳辐照度、地球辐射收支和云。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 4.2 大气变量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。57 4.3 表面变量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。61 5.当前观测系统满足要求的能力。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。64 5.1 太阳辐照度、地球辐射收支和云。。。。。。。。。。。。。。。。。。。。。。。。。。。。。64 5.2 大气变量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。69 5.3 表面变量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。73 6.卫星仪器校准和相互校准的未来改进路线图以满足要求。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.......74 6.1 太阳辐照度、地球辐射预算和云层 .................................。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。80 6.3 表面变量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.......86 7.结束语 ..............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。88 8.致谢。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。89 9.参考文献。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。90 附录 A. 研讨会议程。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。95 附录 B. 研讨会参与者。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。97 首字母缩略词和缩写列表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。99
在云层之上和海浪之下,有广阔而神秘的世界等待我们去探索:太空和深海。虽然这些地方看起来截然不同,但太空和深海探险者都面临着极端的温度、压力和气候。太空和深海都是遥远而充满挑战的环境,远离陆地上的舒适生活。在探索这些领域的过程中,宇航员和水下航天员取得了令人难以置信的发现,发明了令人惊叹的技术,改变了世界。
太阳驱动了我们星球的大气动态,并在塑造地球上的天气和气候模式中发挥作用。虽然太阳能对天气和气候的确切机制仍然是一个挑战,但科学家提出,甚至观察到太阳能活动可以通过不同的能量形式和物理过程影响我们星球的大气条件的几种方式。这个研究主题,“太阳活动对天气和气候的影响”包括涉及对天气和气候影响的太阳影响并探索物理机制的文章。论文范围从太阳能活动对温度,降水,热带气旋(TC),北大西洋振荡(NAO)的影响范围,大西洋子弹推翻循环(AMOC),厄尔尼诺尼诺 - 南方振荡(ENSO),南亚对云对云层的响应对云层的响应,对云层的响应。本研究主题中的两篇论文集中在太阳活动和表面气候变异性之间的关系上。lu等。专注于太阳能活动与欧亚土地上夏季温度分布之间的联系,并在温度模式中发现了11年的太阳周期性,尤其是在中亚。太阳能诱导的中亚的负重电位高度异常会削弱高压脊并加强西北,从而导致区域较低的温度。Hu等。 与11年的太阳周期有关,研究了藏族高原降水的衰老爆发。 两篇论文集中在太阳活动与TC之间的关系上。Hu等。与11年的太阳周期有关,研究了藏族高原降水的衰老爆发。两篇论文集中在太阳活动与TC之间的关系上。在太阳能最长的几年中,亚洲大陆上的大量表面变暖通过改变土地海洋的热对比,增强了印度夏季季风,并增加了藏族中部藏族高原的降水量。Li等人的第一篇论文。研究了北部太平洋西部的太阳活性和ENSO对TC起源频率的综合作用。在太阳周期阶段下降的厄尔尼诺(ElNiño)年度显示TC起源频率的正异常明显很强。各种大气和海洋因素,例如海面温度异常和风模式,有助于太阳周期与TC Genesis频率之间的联系。