本新闻稿中的某些陈述包括但不限于以下陈述:NVIDIA 产品和技术的优势、影响、性能、功能和可用性,包括 NVIDIA Quantum Cloud 和 CUDA-Q 量子计算平台;量子计算代表了计算的下一个革命性前沿,需要世界上最聪明的头脑将这个未来更近一步;NVIDIA Quantum Cloud 探索量子计算的变革性技术,让世界上的每一位科学家都能利用量子计算的力量,让他们的想法更接近现实;第三方对 NVIDIA 产品和技术的使用和采用是前瞻性陈述,受风险和不确定性的影响,可能导致结果与预期存在重大差异。可能导致实际结果大不相同的重要因素包括:全球经济状况;我们对第三方制造、组装、包装和测试我们产品的依赖;技术发展和竞争的影响;新产品和技术的开发或对我们现有产品和技术的增强;市场对我们产品或我们合作伙伴产品的接受度;设计、制造或软件缺陷;消费者偏好或需求的变化;行业标准和界面的变化;我们的产品或技术集成到系统中时意外的性能损失;以及 NVIDIA 不时向美国证券交易委员会 (SEC) 提交的最新报告中详述的其他因素,包括但不限于其 10-K 表年度报告和 10-Q 表季度报告。向 SEC 提交的报告副本发布在公司的网站上,可从 NVIDIA 免费获取。这些前瞻性陈述并非对未来业绩的保证,
变异量子算法(VQA)被认为是嘈杂的中间尺度量子(NISQ)设备的有用应用。通常,在VQA中,参数化的ANSATZ电路用于生成试验波函数,并且对参数进行了优化以最大程度地减少成本函数。另一方面,已经研究了盲量量计算(BQC),以便通过使用云网络为量子算法提供安全性。执行量子操作能力有限的客户端希望能够访问服务器的量子计算机,并且BQC允许客户端使用服务器的计算机,而不会泄漏客户端的信息(例如输入,运行量子算法和输出)到服务器。但是,BQC设计用于容差量子计算,这需要许多辅助量子位,这可能不适合NISQ设备。在这里,我们提出了一种有效的方法,可以为客户端提供保证安全性的NISQ计算。在我们的体系结构中,仅需要N +1量子位,假设服务器已知Ansatzes的形式,其中N表示原始NISQ算法中必要的量子数。客户端仅在从服务器发送的辅助量子位上执行单量测量,并且测量角可以指定NISQ算法的ANSATZES的参数。无信号原则可以保证客户端选择的参数或算法的输出都不会泄漏到服务器。这项工作为NISQ设备的新应用程序铺平了道路。
在大气光学研究所的西伯利亚激光雷达站进行了研究,该仪器包括带有两个激光发射机和两个接收孔的激光雷达系统。liDAR在夜间条件下使用最小天窗背景的观测,使用高频(2.5 kHz)Cu-vapor激光器,平均功率为2 w,波长为510 nm,大型接收镜的直径为2.2 m。在白天测量中,受到明亮天窗背景污染的白天测量,我们使用了低频(10-Hz)nd:yag固体激光器,在1064 nm的波长下,每脉冲具有150 mJ能量,以及直径为0.3 m的接收镜。在这两种情况下,都记录了光子计数状态的激光雷达回报。LIDAR系统的参数确保了从中和高级云中累积高水平的信号,持续1 s(夜间)和3-5 s(白天)。另一方面,在这些时间间隔内积累的激光雷达回报信号的水平(尤其是在白天)太低,无法在云外的传感路径段上执行LIDAR信号的校准,从而正确计算灭绝系数和相关的云光学深度深度τclτcl。因此,在目前的工作中,我们利用了该功能的统计信息