在发布一般或特定关税令时,委员会可考虑针对每种新型和可再生能源制定适当的标准/程序/参数/费用,涉及以下问题:新型和可再生能源发电厂向配电许可证持有者出售电力、自用电力和向第三方出售电力。
自动驾驶汽车的未来在于以人为中心的设计和先进的AI Capabilies。未来的自动驾驶汽车不仅会跨乘客,而且还将互动并适应他们的欲望,从而使旅程变得舒适,有效且令人愉悦。在本文中,我们提出了一个新颖的框架,该框架利用大型语言模型(LLMS)来增强自动驾驶汽车的决策过程。通过整合LLMS的自然语言能力和上下文理解,专业工具使用,协同推理,并与自动驾驶汽车的各种模块进行作用,该框架旨在将LLMS的先进语言和推理能力无缝整合到自动驾驶中。拟议的框架具有革新自动驾驶汽车运行方式,提供个性化援助,持续学习和透明决策的潜力,最终为更安全,更有效的自动驾驶技术做出了贡献。
无缝的人类机器人相互作用(HRI)需要机器人对人类的多模式输入的熟练处理,包括语音,凝视和面部表情,以准确评估人类的影响并相应地提供帮助。同时,机器人必须通过多模态输出渠道清楚地将自己的意图清楚地传达给人类,包括语音,手势和凝视。传统上,在机器人系统中实现此功能通常需要复杂的设计。在意图估计的领域中,以前的研究通常合并意图识别模块,以基于多模式输入[3,17]对人类意图进行分类。一些系统还具有用于检测人类情感状态的专用模块,对于建立社会细微差别的互动至关重要[10,16,18]。但是,这些方法的缺点在于它们耗时且昂贵的培训过程。在输出方面,许多先前的系统集成了情绪状态[8,11]模块,以控制人形输出提示,例如音调,凝视或面部表情,增强了向人类反馈的透明度和生动性。关于运动产生,提出了多种方法,包括预先建立的运动集的混合和图表[19,25],以及使用运动捕获数据[5,9,15]。值得注意的是,这涉及与特定状态相关的每种输出模式的动作手动设计。通过利用文本理解,推理和计划的能力,在短时间内提出了许多机器人应用[7,12,14,20,21,28]。例如,Zhang等人。大型语言模型(LLM)的最新进展,诸如聊天机器人,数据过程和代码生成之类的域中的表现令人印象深刻的功能正在揭示其在机器人技术领域的潜在应用。其中一个通常的例子是“ Saycan”机器人[1],它能够解释人的自然语言命令,分析环境并生成具体的可执行操作序列,以通过使用LLMS来满足人类的要求。但是,机器人和人之间的互动提示仅限于语音命令,即使没有语音输出。最近,一些研究人员还试图将这种技术应用于HRI领域。利用LLM来估计人类有多少信任机器人[30]; Yoshida等人,使用LLMS生成低级控制命令来推动人形机器人运动以进行社会表达[29],而不是用于实践援助。Baermann等人,部署了LLM不仅遵循人类的言语命令,而且还通过人类的自然语言反馈来纠正其错误[2]。然而,通信主要依赖语音相互作用,而较少关注多模式感应和表达能力。ye等。[27]驱动了一个LLM驱动的机器人系统,该系统能够与人类在VR环境中的组装任务中合作。,但是该系统仅限于处理人类语言输入并控制虚拟空间中的单臂。通常,与快速
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
本文介绍了一种跨性别包容的人工智能立场,即“行动人工智能”(eAI)。人工智能设计是一种体现人类文化和价值观的人类社会文化实践。不具代表性的人工智能设计可能会导致社会边缘化。第 1 节借鉴激进的行动主义,概述了具体文化实践。第 2 节探讨了跨性别如何作为一种社会文化实践与技术科学交织在一起。第 3 节重点介绍了在人工智能中机器人与人类互动的具体情况下颠覆性别规范。最后,第 4 节确定了四个道德载体:可解释性、公平性、透明度和可审计性,以便在开发性别包容的人工智能时采取跨性别包容的立场,并颠覆机器人设计中现有的性别规范。
了解人类的社会行为对于综合愿景和机器人技术至关重要。微观的观察(例如,分裂行动)不足,需要采取一种全面的方法来考虑个人行为,组内动态和社会群体层次,以彻底理解。要解决数据集限制,本文引入了JRDB-Social,JRDB的扩展[2]。旨在填补跨室内和室外社会环境的人类理解的空白,JRDB-Social提供了三个层次的注释:个体属性,组内侵入和社会群体环境。该数据集旨在增强我们对机器人应用的人类社会动态的理解。利用最近的尖端多模式大型语言模型,我们评估了我们的基准,以表达其破译社会人类行为的能力。
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
遗传因素在确定人身高方面起着至关重要的作用。矮小的身材通常会影响多个家庭成员,因此,家族性矮小的身材(FSS)代表了生长障碍的显着比例。传统上,FSS被认为是代表特发性短身材的子类别(ISS)的良性多基因条件。然而,遗传研究的进步表明,FSS也可以是单基因的,以常染色体显性方式遗传,并且可能是由不同的机制引起的,包括原发性板障碍,生长激素的发音/不敏感性或通过基本内细胞内途径的破坏。这些发现强调了较远的矮个地位形式的更广泛的表型光谱,这可能与ISS表现出轻度的表现。鉴于重叠的特征和在没有基因检测的情况下与单基因FSS区分多基因的难度,一些研究人员将其重新定义为描述性术语,该术语涵盖了任何家族性地位,无论其基本原因如何。这种转变强调了诊断和管理家庭内部矮小的身材的复杂性,反映了影响人类成长的各种遗传景观。
Cruise AV的标志是其安全的硬件传感器套件,在外部可见。传感器套件不会在外部共享信息,不会通过云数据处理来跟踪或以任何身份保留第三方。这种传感器阵列使Cruise AV能够收集有关其环境的信息并告知系统的驾驶决策。在AV的后备箱内是组成系统“大脑”的计算机,并迅速综合了硬件套件收集的信息,以通过感知(了解环境),预测(评估给定环境的可能的安全路径或轨迹)和控制驾驶(驾驶驾驶员)(评估可能的安全路径或轨迹)。有关巡航自主系统如何工作的更多信息,并在此处的2022 Cruise安全报告中提供了一个安全的驾驶员。
“ AI的准确而复杂的图片(与其流行的描述竞争)在开始时,由于难以钉住人工智能的精确定义而受到阻碍。……奇怪的是,缺乏精确的,普遍接受的人工智能定义可能帮助该领域以不断加剧的速度发展,开花和前进。AI的从业人员,研究人员和开发人员的指导下是一种粗略的方向感,并且必须“继续下去”。尽管如此,定义仍然很重要,而尼尔斯·尼尔森(Nils J. Nilsson)提供了一个有用的定义:“人工智能是致力于使机器变得聪明的活动,而智能是使实体能够在其环境中适当和远见的质量。” [1]” [2]