全球大流行很可能是通过人畜共患病传播到人类的,其中呼吸道病毒感染与粘膜系统相关的气道。在已知的大流行中,五个是由包括当前正在进行的冠状病毒2019(Covid-19)在内的呼吸道病毒引发的。在疫苗开发和治疗剂中的惊人进步有助于改善传染剂的死亡率和发病率。然而,生物体复制和病毒通过粘膜组织传播,不能由肠胃外疫苗直接控制。需要一种新型的缓解策略,以引起强大的粘膜保护并广泛中和活动以阻碍病毒进入机制并抑制传播。本综述着重于口腔粘膜,这是病毒传播的关键部位,也是引起无菌免疫力的有希望的靶标。除了审查人畜共患病毒病毒和口腔粘膜组织发起的历史大流传学外,我们还讨论了口服免疫反应的独特特征。我们解决了与开发新型治疗剂有关以在粘膜水平引起保护性免疫的障碍和新的前景,以最终控制传播。
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
本研究的目的是建立数字人文主义作为互联网和人工智能范式背景下技术变革的驱动力,以人与数字技术之间的社会互动为基础。本文使用一般的哲学和特殊的科学认知方法,特别是分析、综合、概括和建模、结构和功能、敏捷、价值论、协同方法。使用这种方法分析了数字人文主义作为现代发展概念的概念基础,它不仅促进技术进步,而且还考虑到互联网和人工智能在人与技术的社会互动中的挑战和机遇。作者确定了数字人文主义的问题及其克服方法,旨在确保技术发展服务于个人的社会福祉并提高社会生活质量。作者分析了互联网和人工智能时代数字人文主义的新趋势,这些趋势可以提供信息、教育、医疗服务等,使人们的生活更加舒适和富有成效。数字人文主义的概念促进了技术与人类价值观和需求的融合。识别人工智能对技术变革和社会互动的影响有助于创造人道和公正的社会。
摘要简介/目标。草药一直是整个人类历史上至关重要的可再生医学来源,因为大部分全球人口仍然取决于它们的健康益处。草药补充剂的日益普及引起了人们对与其他药物原位的总体安全性和潜在互动的明显关注。目的是刺激对草药 - 药物相互作用的未来研究,以及了解这种相互作用的后果的相互作用机制。方法。该审查是通过使用Google Scholar,Science Direct,Mendeley,Scopus和PubMed的数据库进行系统搜索进行的。用英语编写的出版物被使用。据报道,许多草药产品与已知的东正教药物相互作用。抑制诱导机制触发链反应,通常导致药物生物利用度,毒性或不良副作用降低。据报道,一些草药植物构成结合了CYP2C9,CYP2C19,CYP2E1和CYP3A1,以及许多其他暂时或不可逆地结合了CYP3A1。结论。这项研究是通过重申常规和定期向医生和患者提供固有危险(例如降低疗效和与Herb-Drug相互作用(HDI)相关的毒性增加)的不完善性结束的结论。草药使用者应定期建议适当使用草药补充剂,以避免在共同给药期间或联合疗法中发生不良药物相互作用的风险。在HDI中可以观察到协同作用和拮抗作用,因此需要进一步的临床前和临床经验研究来强调HDI的机制和程度。关键字:草药 - 药物相互作用,酶,药代动力学互动,传统医学,细胞色素P450通讯作者:Mary O. Ologe电子邮件:FunMiologe@yahoo.com
手势在人类和人类机器人相互作用中起着关键作用。在基于任务的上下文中,诸如指向之类的神性手势对于指导关注与任务相关的实体至关重要。虽然大多数基于任务的人类和人类手机Di-Alogue专注于封闭世界领域的工作,但重新研究已开始考虑开放世界任务,在这种任务中,与任务相关的对象可能不知道与先验者相互作用。在开放世界任务中,我们认为必须对手势进行更细微的考虑,因为交互者可以使用桥接传统手势类别的手势,以便浏览其任务环境的开放世界维度。在这项工作中,我们探讨了在开放世界任务上下文中使用的手势类型及其使用频率。我们的结果表明需要重新考虑在人类和人类机器人相互作用的研究中进行手势分析的方式。
无缝的人类机器人相互作用(HRI)需要机器人对人类的多模式输入的熟练处理,包括语音,凝视和面部表情,以准确评估人类的影响并相应地提供帮助。同时,机器人必须通过多模态输出渠道清楚地将自己的意图清楚地传达给人类,包括语音,手势和凝视。传统上,在机器人系统中实现此功能通常需要复杂的设计。在意图估计的领域中,以前的研究通常合并意图识别模块,以基于多模式输入[3,17]对人类意图进行分类。一些系统还具有用于检测人类情感状态的专用模块,对于建立社会细微差别的互动至关重要[10,16,18]。但是,这些方法的缺点在于它们耗时且昂贵的培训过程。在输出方面,许多先前的系统集成了情绪状态[8,11]模块,以控制人形输出提示,例如音调,凝视或面部表情,增强了向人类反馈的透明度和生动性。关于运动产生,提出了多种方法,包括预先建立的运动集的混合和图表[19,25],以及使用运动捕获数据[5,9,15]。值得注意的是,这涉及与特定状态相关的每种输出模式的动作手动设计。通过利用文本理解,推理和计划的能力,在短时间内提出了许多机器人应用[7,12,14,20,21,28]。例如,Zhang等人。大型语言模型(LLM)的最新进展,诸如聊天机器人,数据过程和代码生成之类的域中的表现令人印象深刻的功能正在揭示其在机器人技术领域的潜在应用。其中一个通常的例子是“ Saycan”机器人[1],它能够解释人的自然语言命令,分析环境并生成具体的可执行操作序列,以通过使用LLMS来满足人类的要求。但是,机器人和人之间的互动提示仅限于语音命令,即使没有语音输出。最近,一些研究人员还试图将这种技术应用于HRI领域。利用LLM来估计人类有多少信任机器人[30]; Yoshida等人,使用LLMS生成低级控制命令来推动人形机器人运动以进行社会表达[29],而不是用于实践援助。Baermann等人,部署了LLM不仅遵循人类的言语命令,而且还通过人类的自然语言反馈来纠正其错误[2]。然而,通信主要依赖语音相互作用,而较少关注多模式感应和表达能力。ye等。[27]驱动了一个LLM驱动的机器人系统,该系统能够与人类在VR环境中的组装任务中合作。,但是该系统仅限于处理人类语言输入并控制虚拟空间中的单臂。通常,与快速
摘要这项研究的主要目的是通过开发包括脑部计算机界面(BCI)和客户端Vidinexus的互动屏幕在内的原型来探索以改善博物馆访问者的体验和参与的选项。这是通过遵循重点关注研究的三个不同方面的方法来完成的;博物馆和艺术,BCI和原型。前两个方面是背景文献研究的重点。这些发现用于指导原型开发的创作过程。系统的原型,包括交互式测验,它根据由EEG设备测量的选择和参与水平与访问者相匹配。该原型是在研究的构想,规范和实现阶段创建的;并在评估阶段进行了测试。
Maureen Gwinn 环境保护署 与会者 gwinn.maureen@epa.gov Holly Hajare 总统执行办公室 科学技术政策办公室 与会者 Holly.S.Hajare@ostp.eop.gov Ha-Hoa Hamano 美国国家航空航天局 与会者 ha-hoa.n.hamano@nasa.gov Tracy Hancock 环境保护署 与会者 Hancock.Tracy@epa.gov Scott Harmon 总务管理局工作人员 scott.harmon@gsa.gov Katherine Harrington 国家科学基金会 与会者 kharring@nsf.gov Kristen Honey 卫生与公众服务部 与会者 kristen.honey@hhs.gov Ann Hunter-Pirtle 能源部 与会者 ann.hunter-pirtle@hq.doe.gov Viv Hutchison 内政部 美国地质调查局 与会者 vhutchison@usgs.gov Boyan Ignatov 核能监管委员会与会者 Boyan.Ignatov@nrc.gov
巡航起源配备了一个传感器套件,该套件由相机,雷达和雷达(Radars and LiDars)组成,在原点的外部可见。类似于螺栓,外部传感器阵列使Cruise Origin可以收集有关其环境的信息并为系统的驾驶决策提供信息。原点是一台计算机,该计算机包括系统的“大脑”。计算机及其冗余备份,旅行时乘客将看不到或无法访问。自主技术是通过迅速综合传感器套件收集的信息来通过感知(了解环境),预测和计划(评估给定环境的车辆可能的安全路径或轨迹)和控制措施(驱动器操作)来告知行为的工作。有关巡航起源系统如何工作的更多信息,并被设计为安全驱动程序,请在此处和我们的引擎盖介绍中提供的GM安全报告中提供。3,4
