摘要。在开发具有破缺基尔霍夫对称性的非互易光学元件方面取得了重大进展,为通过重复使用发射光子将光伏 (PV) 转换效率提高到超越肖克利-奎塞尔极限铺平了道路。最近的论文分析了具有多个或无限多个多结电池的 PV 转换器,其中电池通过非互易滤波器(光学二极管)耦合,使得一个电池发出的光被另一个电池吸收。我们提出并研究了一种具有非互易外部光子回收的单电池转换器,该转换器可由同一电池重新吸收和重复使用发射光。我们从遍历性、无序性、能量可用性、信息熵和相干性的角度考虑了阳光中光子的属性,并确定了内可逆热力学对最大功率输出时转换效率施加的基本限制。我们的结果表明,具有理想多结电池的非互易转换器可以接近卡诺效率,而精确地在卡诺极限下工作则需要无数个光子循环过程。这一要求解决了光学二极管著名的热力学悖论,因为无限循环增强的电池或光学系统中的任何小耗散都将使转换器工作稳定在卡诺极限以下。我们将内可逆热力学推广到具有非零化学势的光子分布,并推导出非互易单结 PV 转换器的极限效率。评估了该转换器与可用 GaAs 太阳能电池的性能。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JPE.12.032207]
量子比特和腔之间的色散相互作用在电路和腔量子电动力学中无处不在。它描述了一个量子模式响应另一个量子模式的激发而发生的频率偏移,并且在封闭系统中必然是双向的,即互易的。在这里,我们展示了一项关于 transmon 量子比特和超导腔之间非互易色散型相互作用的实验研究,这种相互作用源于与具有破坏时间反转对称性的耗散中间模式的共同耦合。我们通过原位调整铁氧体元件的磁场偏置来表征不同程度的非互易性下的量子比特腔动力学,包括不对称频率牵引和光子散粒噪声失相。我们引入了一个用于色散状态下非互易相互作用的通用主方程模型,为与中间系统无关的观察到的量子比特腔动力学提供了紧凑的描述。我们的结果提供了一个超越非厄米汉密尔顿量和级联系统典型范式的量子非互易现象的例子。
1 浙江大学物理系量子信息交叉学科中心、现代光学仪器国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310027 2 清华大学高等研究院,北京 100084 3 伊利诺伊大学香槟分校物理系,伊利诺伊州厄巴纳 61801-3080,美国 4 中国科学技术大学中国科学院量子信息重点实验室,合肥 230026 5 中国科学院量子信息与量子物理卓越创新中心,合肥 230026 6 南京大学先进微结构协同创新中心,南京 210093 7 中国科学院量子光学重点实验室,上海 200800
非互易性源自时间反演对称性的破坏,已成为各种量子技术应用的基本工具。它使信号定向流动和有效噪声抑制成为可能,是当前量子信息和计算系统架构中的关键要素。在这里,我们探索其在优化量子电池充电动力学方面的潜力。通过在充电过程中通过储层工程引入非互易性,我们诱导从量子充电器到电池的定向能量流,从而显着增加能量积累。尽管存在局部耗散,但与传统的充电器-电池系统相比,非互易方法可将电池能量提高四倍。我们证明,采用共享储层可以建立一个最佳条件,其中非互易性可以提高充电效率并提高电池中的能量存储。这种效应在稳态极限下可以观察到,即使在过阻尼耦合状态下也适用,从而无需对演化参数进行精确的时间控制。我们的结果可以扩展到量子节点的手性网络,作为多单元量子电池系统来增强存储容量。所提出的方法很容易使用目前最先进的量子电路来实现,无论是在光子学还是超导量子系统中。在更广泛的背景下,非互易充电的概念对传感、能量捕获和存储技术或研究量子热力学具有重要意义。
我们的 PAVOS 旋转器和隔离器提供业界最佳的激光可靠性和性能,同时提供卓越的隔离度并保持非常高的传输率。我们的 PAVOS 产品依靠高维尔德常数、低吸收率材料的法拉第效应,将线性偏振光平面向前旋转,并在反向进行额外的 45° 非互易旋转。PAVOS 可用作旋转器或隔离器。
摘要 — 我们提出了一种基于电荷准静态模型的显式小信号石墨烯场效应晶体管 (GFET) 参数提取程序。通过对 300 nm 器件进行高频(高达 18 GHz)晶圆上测量,精确验证了小信号参数对栅极电压和频率的依赖性。与其他只关注少数参数的工作不同,这些参数是同时研究的。首次将有效的程序应用于 GFET,以从 Y 参数中去除接触电阻和栅极电阻。使用这些方法可以得到提取小信号模型参数的简单方程,这对于射频电路设计非常有用。此外,我们首次展示了本征 GFET 非互易电容模型与栅极电压和频率的实验验证。还给出了测量的单位增益和最大振荡频率以及电流和功率增益与栅极电压依赖性的精确模型。
伽马时间曲线 226 伽马随波长的变化 227 拍摄对象在特性曲线上的定位 227 平均梯度和 ¯ G 228 对比度指数 228 显影变化对底片的影响 228 曝光变化对底片的影响 229 曝光宽容度 230 相纸的响应曲线 231 最大黑色 231 相纸的曝光范围 232 打印曲线随乳剂类型的变化 232 打印曲线随显影的变化 233 打印中的要求 234 相纸对比度 234 高对比度拍摄对象的问题 235 色调再现 236 互易律失效 238 感光度测定实践 239 感光度计 240 密度计 241 基本感光度测定 244 数码相机的感光度测定 245
然而,超导体中的二极管效应可能由几种不同的机制引起,具体取决于器件的成分和结构。几个研究小组已经研究了 SDE 理论。例如,通过使用平均场、Bogoliubov-de Gennes (BdG) 和 Ginzburg-Landau 理论,最近提出了无结块体超导体中的 SDE 以及其约瑟夫森结版本的理论见解。然而,另一个重要概念是邻近耦合,其中约瑟夫森结是在高自旋轨道耦合材料之上制造的;在这里,反演对称性不仅被器件的异质成分破坏,还被自旋轨道耦合项破坏;在这里,破坏 TRS 所需的磁场位于器件平面内。近年来,自旋轨道耦合非中心对称超导体中 SDE 的有趣实验演示已经复兴并刺激了非互易超电流传输的理论研究。然而,SDE 的想法已经存在了几十年。
摘要:手性是一个基本概念,渗透到物理、材料科学、化学和生物学等不同领域。本次演讲探讨了凝聚态系统中手性和拓扑之间的深刻联系。我将通过三个具体的例子来说明不同层面上的这种联系。首先,我将介绍一种新的手性二维材料,其中观察到拓扑非平凡能带特征,即 Kramers-Weyl。其次,我将讨论量子异常霍尔绝缘体,它展示了动量空间中的手性态如何转化为实空间中受拓扑保护的电子传输。这些手性电子态可用于构建非互易设备,从而实现固态量子计算机的扩展。最后,我将简要介绍一种跨学科方法,将分子级手性印入二维超导体中以得到手性超导体。这些手性超导体可用于构建未来的容错拓扑量子比特。
磁振子学是研究自旋波的物理特性并利用其进行数据处理的科学领域。可扩展至原子尺寸、从 GHz 到 THz 频率范围的操作、非线性和非互易现象的利用、与 CMOS 的兼容性只是磁振子提供的众多优势中的一小部分。尽管磁振子学仍然主要定位于学术领域,但该领域所涵盖的科学和技术挑战范围正在得到广泛研究,许多概念验证原型已经在实验室中实现。本路线图是许多作者共同努力的成果,涵盖了多功能自旋波计算方法、它们的概念构建块以及底层物理现象。特别是,路线图讨论了使用布尔数字数据的计算操作、神经形态计算等非常规方法以及基于磁振子的量子计算的进展。本文由七个大主题部分组成的子节集合组成。每个小节由一位或一组作者准备,并简要描述当前的挑战和研究方向进一步发展的前景。