- 人力和监督; - 技术的稳健性和安全性; - 隐私和数据治理; - 透明度、多样性、非歧视和公平性 - 社会和环境福祉;以及 - 问责制
表 1:材料特性、断裂应力、断裂应变、断裂能和玻璃化转变温度 (T g )。a 值计算为断裂应力和最大应力的平均值 (n=3)。b 值计算为断裂应变和最大应变的平均值
●通过开发可适应规模化管理的新型种牛饲养管理支持系统, ●在不延长初产年龄和产犊间隔的情况下,将种牛首次人工授精受胎率提高10%以上。
本专著使用克劳德·香农 (Claude Shannon) 等人开发的信息理论来分析会计。在以下两种情况下可以推导出三向框架等价性:(i) 当状态可观测时;(ii) 当状态不可观测且只有信号可观测时,信号报告的状态有误。该等价性建立了会计数字、公司回报率和公司可用信息量的相等性,其中香农熵是信息度量。推导状态可观测等价性的主要假设是恒定的相对风险规避偏好、无套利价格和几何平均会计估值。状态不可观测性使用量子公理建模,因此使用量子概率;状态不可观测的方式与量子对象不可观测的方式相同。状态可观测等价性被视为状态不可观测等价性的特例。
1 在一些较早的文献中,偏序被写成相反的形式,即“不细化”,因此顶部和底部以及连接和相遇互换([1];[2])。 2 在范畴论中,子集的概念推广到子对象或“部分”的概念,“部分”的对偶概念(通过反转箭头获得)是划分的概念。” [5,第 85 页]
信息理论已成为一种越来越重要的研究领域,以更好地了解Quantum力学。值得注意的是,它涵盖了基础和应用观点,还提供了一种共同的技术语言来研究各种研究领域。非常明显,关键信息理论数量之一是由相对熵给出的,这量化了分开两个概率分布,甚至两个量子状态的困难。这样的数量依赖于诸如计量,量子热力学,量子通信和量子信息等领域的核心。鉴于应用的广泛性,希望了解该数量在量子过程中如何变化。通过考虑一般的统一通道,我们在输出和输入之间的广义相对熵(r´enyi和tsallis)上建立了一个结合。作为我们边界的应用,我们根据相对熵得出了一个量子速度限制的家族。讨论了这个家族与热力学,量子相干,不对称和单光信息理论之间的可能联系。
对于任何状态 ρ 和 σ (其中后者不需要归一化)。相对熵是一个比冯·诺依曼熵更一般的熵量。它包含后者和其他信息测度,如互信息,作为特例。它可以看作是量子态之间的相异性度量,并用于定义各种重要量,如纠缠的相对熵 [6]。相对熵表征非对称假设检验的误差指数 [7] 或量化资源理论中的资源量 [8,9]。到目前为止,还没有证明量子相对熵的链式法则。这与经典情况形成了鲜明的对比,在经典情况下,相对熵(也称为 Kullback-Leibler 散度)存在链式法则 [10,定理 2.5.3]。对于一对离散随机变量 ( X, Y ),其字母为 X × Y ,我们有
首先,回想一下参考文献。[ 24 ] 其中 Hughston、Josza 和 Wootters 给出了给定密度矩阵背后所有可能集合的构造性特征,假设集合具有有限数量的元素。其次,Wiseman 和 Vaccaro 在参考文献中。[ 25 ] 然后通过物理可实现集合的动态激励标准论证了首选集合。第三,Goldstein、Lebowitz、Tumulka 和 Zanghi 挑选出高斯调整投影 (GAP) 测度作为热力学和统计力学环境中密度矩阵背后的首选集合 [ 26 ]。第四,Brody 和 Hughston 在几何量子力学中使用了最大熵的一种形式 [27]。HJW 定理。在技术层面上,对于我们的目的而言,最重要的结果之一是 Hughston-Josza-Wootters (HJW) 定理,该定理已在文献 [ 24 ] 中证明,现在我们对其进行总结。考虑一个有限维希尔伯特空间 H S 的系统,该系统由秩为 r 的密度矩阵 ρ 描述:ρ = P r j =1 λ j | λ j ⟩⟨ λ j | 。我们假设 dim H S := d S = r ,因为 d S > r 的情况很容易通过将 H S 限制在由 ρ 的图像定义的 r 维子空间中来处理。然后,可以通过与具有 d S 个正交向量作为列的 d × d S 矩阵 M 进行线性混合,从 L ( ρ ) 生成具有 d ≥ d S 个元素的通用集合 e ρ ∈E ( ρ )。然后,e ρ = { p k , | ψ k ⟩} 由以下公式给出: