emilia.jercan@gmail.com 摘要。环境经济和绿色转型是密切相关的概念,其重点是促进新的可持续道路和经济增长,并减少活动对环境的负面影响。因此,环境经济和绿色转型已成为世界持续发展的两个最重要的方向。环境经济涉及绿色技术、绿色能源的持续进步以及旨在改变社会对更多环境解决方案和政策的态度的不同活动。环境经济是一门研究环境产品、服务和政策在不同现实、经济和社会中的经济影响的学科。它包括有助于保护自然资源存量和保护环境的商品和服务。绿色转型是指将人类、地球和伙伴关系转变为环境友好型经济的过程。这还包括实施减少温室气体排放、提高能源效率、增加可再生能源使用以及减少浪费和污染的政策和做法。本文旨在基于欧盟统计局的数据,分析欧盟成员国环境经济的发展情况,考虑到这一主题如今促使政府和企业做出承诺,并越来越重视通过各种计划或法规保护环境和促进可持续经济发展。此外,本文还旨在观察环境经济对欧盟出口的影响并了解绿色转型的过程。关键词:环境经济;绿色转型;欧盟;绿色协议;绿色经济。介绍环境经济和绿色转型的概念是可持续发展目标 (SDG) 和欧洲绿色协议的核心。按照符合可持续发展目标的可持续轨迹向有弹性的经济和绿色低碳气候的转型为整个社会提供了机遇,并支持 COVID-19 后的经济复苏,以建立有利的未来(欧洲复兴开发银行,2020 年)。
区域经济影响分析具有从Haig(1926)到Kratena等人最新的区域间动态计量经济学模型的悠久历史。(2013)。研究人员试图构建可以预测经济行动并估计的经济行动的分析框架。领域的主要工具之一仍然是输入输出(IO)模型,其75年以上的持续使用在很大程度上是由于它作为大多数区域经济模型的基础的重要性。在过去的40年中,设计和估计越来越复杂的经验模型的能力通过改进的统计方法,数据频率增加和计算能力的指数增长(Tesfatsion和Judd,2006;另请参见Brooke等人。,1992)。这导致了更复杂的模型的开发,即具有产生动态预测和影响分析的能力的计量经济输入输出(EIO)。首先由Isard(1951)开发了该模型将IO模型的部门细节与时间序列信息相结合,为研究人员提供了一种强大的工具,以了解超出传统静态模型范围的长期现象。在国家一级的国家一级和康威(1990)的Stone(1961)和Almon(2017)进一步增强了其发展。然而,如今,在世界大多数地区,EIO仍然是很少使用的模型,并且当然并未在区域分析中广泛使用。1的部分缺乏识别是由于在同一时间范围内发生的另一类模型的成功和增长引起的,该模型是区域可计算的一般平衡(CGE)模型。CGE模型开始出现在1970年代,但直到1990年代才成为区域经济建模的主要工具(Partridge and Rickman,1998)。该模型采用了一种可靠的,复杂的技术,将供应侧关系纳入了IO的需求方面。再加上易于访问的软件,尤其是近年来,在发展中国家尤其是在全球范围内的突出。然而,该模型通常缺乏EIO的一些原始好处,例如预测和详细的部门信息,尽管一些最近的事态发展表明可以容纳这些限制(例如,请参见术语模型,Wittwer,2017年)。本文的目的是评估EIO和CGE之间的实际和理论差异,并评估可以实现两种方法的整合的路径。应该指出的是,Heim(2017)的最新贡献对国家一级的当前趋势提出了挑战,该趋势避免了动态随机通用平衡(DSGE)配方的标准计量经济学模型和矢量自动回应(VAR)模型。Heim(2017)开发了一个56个方程式模型,并测试了其针对DSGE和VAR模型的预测能力,并取得了很大的成功。
fi g u r e 1从植物中的全长cDNA克隆中拯救感染性玉米镶嵌病毒(MMV)。(a)PJL-MMV-WT,PTF-N&P和PJL-L-Lintron质粒的示意图。全长的MMV型质粒设计用于转录,以产生MMV抗原组RNA(AgRNA),并包含位于截短的CAMV Double 35S启动子(2×35s)和肝炎乙肝(RZ)rzl89 bjl89 bilary prinary prinary pharine pharione phinary phinary phinary phincy sequence之间的全长MMV cDNA。请注意,序列以抗原(mRNA)感显示。在PTF二进制质粒中的2×35s和35s终结序列之间插入了N和P的全长cDNA。L的全长cDNA与植物内含子ST-LS1插入2×35s和35S终结序列之间的植物内含子cDNA,在PJL89二元质粒中。(b)用含有PJL-MMV-GFP,PTF-N&P和PJL-L-INTRON质粒的农杆菌菌株的农杆菌菌株的示意图,并说明了PJL-MMV-GFP质粒构建。全长PJL-MMV-GFP包含重复的N/P基因连接,将MMV抗原组cDNA的N和P基因之间的GFP基因两侧。le,领导者; TR,拖车; Ter,终结者; TEV,烟草蚀刻病毒; LB,左边界序列; RB,右边界序列。(c)通过烟草本尼亚娜(Nicotiana Benthamiana)的MMV救援程序的例证,并转移到玉米和Peregrinus Maidis Planthoppers。dpi,接种后天。图1C:使用biore nder.com
人们越来越关注美国电力供应快速深度脱碳的情景,其中成本最低的解决方案通常涉及可再生能源、能源存储和输电资产的大幅扩张。能够整合可再生能源项目同时最大限度减少输电扩张的战略在未来可能特别有价值。正是在这种背景下,混合发电厂(或混合能源系统)的概念变得突出。一个具体的例子是 FlexPower 概念,1 它试图展示如何将可变可再生能源 (VRE) 和能源存储技术结合起来,从而产生基于可再生能源的混合发电厂,提供完全的可调度性和全方位的可靠性和弹性服务,类似于或优于基于燃料的发电厂。
摘要:COPD(慢性阻塞性肺部疾病)是与全球大量发病率和死亡率相关的主要公共卫生问题。当前的该疾病治疗指南建议从吸入的支气管扩张剂开始,必要时加紧结合疗法,和/或将吸入的皮质类固醇作为症状和气流阻塞的进展。但是,没有药物治疗可以阻止疾病进展。COPD发病机理的基础机理定义仍然很少了解,人们普遍认为,氧化应激和低度气道炎症的免疫反应改变是导致COPD发展的主要因素。目前正在研究的几种潜在的治疗靶标,包括炎症和肺相关的类固醇耐药性的免疫调节途径是由氧化应激信号传导级联反应引起的。COPD患者的炎症介质水平增加,包括脂质和肽介质,以及维持炎症免疫反应并募集循环细胞进入肺部的细胞因子和趋化因子网络。 这些促炎性介质中的许多受核因子-Kappab(NF-κB)和有丝分裂原激活的蛋白激酶(MAPKS)(例如p38 MAPK)调节。 增加的氧化应激是永久性炎症和肺损伤的关键驱动机制。 此外,许多降解弹性蛋白纤维的蛋白酶被气道驻留的COPD患者浸润免疫细胞分泌。 关键字:COPD,机械,药物治疗COPD患者的炎症介质水平增加,包括脂质和肽介质,以及维持炎症免疫反应并募集循环细胞进入肺部的细胞因子和趋化因子网络。这些促炎性介质中的许多受核因子-Kappab(NF-κB)和有丝分裂原激活的蛋白激酶(MAPKS)(例如p38 MAPK)调节。增加的氧化应激是永久性炎症和肺损伤的关键驱动机制。此外,许多降解弹性蛋白纤维的蛋白酶被气道驻留的COPD患者浸润免疫细胞分泌。关键字:COPD,机械,药物治疗从这个角度来看,我们在炎症和氧化应激的背景下讨论了信号通路激活的新颖方面,以及针对COPD中潜在的机械疾病过程的潜在有效药物治疗的广泛观点。
定向肿瘤分析解决方案 Endeavor 由 Personal Genome Diagnostics (PGDx) elio™ 组织完整检测提供支持。该检测全面查询 505 个基因的单核苷酸变异 (SNV) 和插入/缺失 (indel)、23 个基因的易位、28 个基因的扩增以及微卫星不稳定性 (MSI) 和肿瘤突变负担 (TMB)。通过个性化重排末端分析 (PARE) 检测易位,这是一种由 PGDx 开发的专有方法,结合深度测序和生物信息学方法,以识别指示基因融合事件的配对末端测序。1 通过全面覆盖外显子和内含子区域,该检测能够捕获特征明确和新颖的融合事件,使其成为一种高度敏感、与融合伴侣无关的检测方法。• 使用 PathGroup 的实体肿瘤融合检测进行基于 RNA 的分子分析,
摘要:提出了一种考虑到源 - 负载不确定性的多源互补发电系统的最佳调度策略,以解决大规模间歇性可再生能源消耗和电力负荷不稳定性对电网调度的影响。不确定性问题首先转化为常见的研究情况,例如负载功率预测,太阳能和风能。向后的场景减少和拉丁超立方体抽样技术用于创建这些常见情况。基于此,提出了一个多源互补的发电系统的多时间尺度协调的最佳调度控制方法,其中提出了需求响应,并检查了风– Pv-pv-thermal-pump-pump-pump Pump Pump Pump的最佳操作。使用时间的电力价格优化了日期定价模式的电气负载,并且在日期安排中选择了两种需求响应负载。第二,最低的系统运营成本以及每个源的日期和日期调整最少,作为多次量度互补系统的多次协调调度模型的日期和日内阶段的优化目标。该示例研究表明,调度策略可能会增加消耗的可再生能源的量,最大程度地减少载荷频率,提高系统稳定性并进一步降低运营费用,从而证明建议策略的可行性和效率。
风能和太阳能光伏能源系统的间歇性特性导致发电量波动,因为电力输出高度依赖于当地天气条件,从而引发负载遮蔽问题,而负载遮蔽问题又导致电压和频率不稳定。除此之外,高比例的不稳定可再生能源会导致频率变化不稳定,从而影响电网稳定性。为了减少这种影响,大多数风能-太阳能系统通常使用储能系统来平衡负载变化期间的电压和频率不稳定性。一种创新的储能系统是用于风能和太阳能混合能源系统的压缩空气储能系统 (CAES),这项技术是本研究的重点。本研究的目的是通过建模和实验方法检查 CAES 系统的系统配置,并设计 PID 控制器来调节不同负载条件下的电压和频率。本文介绍了基本元件和整个系统,并在 MATLAB/Simulink 环境中针对不同负载条件进行了粗略建模。在德库尔特理工大学西门子实验室的压缩空气储存原型机上,通过实验工作台对开发的模型进行了测试,并探讨了工作参数对系统效率和模型准确性的影响。性能