物理学中的互补原理认为,要完全了解原子尺度上的现象,需要描述波和粒子的特性。该原理由丹麦物理学家尼尔斯·玻尔于 1928 年提出。他的说法是,根据实验布置,光和电子等现象的行为有时像波,有时像粒子,并且不可能同时观察到波和粒子两种特性。下面将表明,所有传统量子力学的实际怪异性都来自基本量子力学定义中含义的逻辑不一致,与现象尺度和附加的人为互补原理无关 [1] [2] [3] [4]。下面将解释,理论不应该谈论互补性,而应该谈论将测量过程布置适当地分为操作
摘要:量子力学与广义相对论之间存在着不可调和的矛盾,导致了黑洞信息悖论和防火墙悖论。本文探讨了这两个悖论产生的原因,并提出了一些可能的解决办法。信息悖论是想探究信息落入黑洞后是否真的会丢失,本文简要介绍了马尔达西那对偶原理、黑洞互补原理以及其他解决该悖论的模型。防火墙悖论是想探究穿过黑洞视界的物体是否会被防火墙摧毁,计算复杂性的引入和ER=EPR模型可能有助于解决这一悖论。此外,如果防火墙真的存在,引力波撞击防火墙的反弹可能有助于探测到它。总的来说,黑洞悖论的解决可能为我们统一量子力学和广义相对论提供一种可能的途径。
摘要:在我们问什么是量子引力理论之前,我们有一个合理的追求,即在弯曲时空中制定一个稳健的量子场论 (QFTCS)。几十年来,一些概念问题,尤其是幺正性损失(纯态演变为混合态),引起了人们的关注。在本文中,我们承认时间是量子理论中的一个参数,这与它在广义相对论 (GR) 背景下的地位不同,我们从“量子优先方法”入手,提出了一种基于离散时空变换的 QFTCS 新公式,这提供了一种实现幺正性的方法。我们基于离散时空变换和几何超选择规则,用直接和 Fock 空间结构重写了 Minkowski 时空中的 QFTCS。将此框架应用于德西特 (dS) 时空中的 QFTCS,我们阐明了这种量化方法如何符合幺正性和观察者互补原理。然后,我们评论了对德西特时空中状态散射的理解。此外,我们简要讨论了 QFTCS 方法对未来量子引力研究的影响。
引入了波颗粒二元性的概念,de Broglie提出了1923年最令人困惑的量子物理学概念之一[1]。后来,Bohr [2]将此违反直觉特征推广为互补原理。根据互补原则,量子对象具有相同真实但相互排斥的物理特性[2]。为了说明,考虑到干涉仪的设置,量子系统中包含的所有信息均由系统的波和粒度范围捕获。但是,测量其中一种特性禁止观察到另一个特性[2]。可以通过检查受干涉仪的单个光子来理解此设置。在这样的学科中,光的粒子性质是由我们对光子路径的知识所捕获的[3,4]。相比之下,光的波性质取决于屏幕上干涉模式的可见性[3,4]。互补原则的概念自从引入以来一直是激烈辩论的主题[3,5];然而,直到1979年,它才被数学量化,当时Wootters和Zurek定量制定了量子系统的波和粒子特征[6]。此量化后来表示为显式不等式p 2 + v 2⩽1[7],其中p代表量子粒子的路径信息(先前的路径可预测性),V代表了干扰模式,可见性,解决了光的波动行为[8-12]。从那时起,对量子二元性的各个方面都有很大的兴趣[13-18]。考虑到年轻的双缝实验中的波颗粒二元性,Scully和Drühl意识到了一个深刻的新颖特征,可以通过删除删除哪个路径信息来恢复干扰模式[19];
量子信息具有测量本质上是一个破坏性过程的特性。这一特征在互补原理中表现得最为明显,该原理指出互不相容的可观测量不能同时测量。Broadbent 和 Islam (TCC 2020) 最近的研究基于量子力学的这一方面,实现了一种称为认证删除的密码概念。虽然这个了不起的概念使经典验证者能够确信 (私钥) 量子密文已被不受信任的一方删除,但它并没有提供额外的功能层。在这项工作中,我们用完全同态加密 (FHE) 增强了删除证明范式。我们构建了第一个具有认证删除的完全同态加密方案——这是一种交互式协议,它使不受信任的量子服务器能够对加密数据进行计算,并且如果客户端要求,可以同时向客户端证明数据删除。我们的方案具有理想的特性,即删除证书的验证是公开的;这意味着任何人都可以验证删除已经发生。我们的主要技术要素是一个交互式协议,通过该协议,量子证明者可以说服经典验证者,以量子态形式出现的带错误学习 (LWE) 分布中的样本已被删除。作为我们协议的一个应用,我们构建了一个具有认证删除的 Dual-Regev 公钥加密方案,然后将其扩展到相同类型的 (分级) FHE 方案。我们引入了高斯崩溃哈希函数的概念 - Unruh (Eurocrypt 2016) 定义的崩溃哈希函数的一个特例 - 并在假设 Ajtai 哈希函数在存在泄漏的情况下满足某种强高斯崩溃性质的情况下证明了我们方案的安全性。
1. 简介量子信息论彻底改变了信息论和计算的基础 [1, 2]。前量子(称为“经典”)科学框架允许用整数(例如,根据美国信息交换标准代码 (ASCII) 用 7 比特字符串表示文本字符)来标记客观信息,这是信息论的基础。信息处理可以根据布尔逻辑规则执行,表现为一位运算(例如 NOT)和两位运算(例如 NAND)的连接。量子信息通过允许信息态的相干叠加彻底改变了信息游戏,遵循量子互补原理,可以认为它既是粒子状的,又是波浪状的。例如,三位字符串 010 在量子上成为量子态 | 010 ⟩(希尔伯特空间元素),其物理表现为三个自旋向下、自旋向上和自旋向下的电子,其中自旋向下状态标记为 | 0 ⟩,自旋向上状态标记为 | 1 ⟩(以狄拉克符号或布拉克符号表示法 [3])。将此三电子态与其正交补态叠加为 | 101 ⟩ 。对于本文中隐含的状态归一化,这两个状态的叠加为 | 010 ⟩ + | 101 ⟩ ,以二进制表示形式表示为数字 2 和 5 的叠加。这些信息态的叠加可以进行量子处理,即以保持相干性的方式处理。理想情况下,这种叠加态可以通过任意幺正映射(希尔伯特空间上的等距)进行变换。实际上,噪声和损失等开放系统效应可能会影响性能,但几乎幺正映射(例如接近幺正的完全正迹保持映射 [1])足以用于有用的量子信息处理,前提是采用容错方式采用量子版本的纠错 [4]。量子计算的早期动机是模拟物理,特别是以一种自然的量子描述方式模拟量子系统 [5],即使用量子计算。自这一最初想法以来,出现了许多卓越的量子算法,其中卓越是指与传统算法相比提供卓越的性能,例如高效计算意味着计算资源,例如运行时间和计算数量
1. 简介量子信息论彻底改变了信息论和计算的基础 [1, 2]。前量子(称为“经典”)科学框架允许用整数(例如,根据美国信息交换标准代码 (ASCII) 用 7 比特字符串表示文本字符)来标记客观信息,这是信息论的基础。信息处理可以根据布尔逻辑规则执行,表现为一位运算(例如 NOT)和两位运算(例如 NAND)的连接。量子信息通过允许信息态的相干叠加彻底改变了信息游戏,遵循量子互补原理,可以认为它既是粒子状的,又是波浪状的。例如,三位字符串 010 在量子上成为量子态 | 010 ⟩(希尔伯特空间元素),其物理表现为三个自旋向下、自旋向上和自旋向下的电子,其中自旋向下状态标记为 | 0 ⟩,自旋向上状态标记为 | 1 ⟩(以狄拉克符号或布拉克符号表示法 [3])。将此三电子态与其正交补态叠加为 | 101 ⟩ 。对于本文中隐含的状态归一化,这两个状态的叠加为 | 010 ⟩ + | 101 ⟩ ,以二进制表示形式表示为数字 2 和 5 的叠加。这些信息态的叠加可以进行量子处理,即以保持相干性的方式处理。理想情况下,这种叠加态可以通过任意幺正映射(希尔伯特空间上的等距)进行变换。实际上,噪声和损失等开放系统效应可能会影响性能,但几乎幺正映射(例如接近幺正的完全正迹保持映射 [1])足以用于有用的量子信息处理,前提是采用容错方式采用量子版本的纠错 [4]。量子计算的早期动机是模拟物理,特别是以一种自然的量子描述方式模拟量子系统 [5],即使用量子计算。自这一最初想法以来,出现了许多卓越的量子算法,其中卓越是指与传统算法相比提供卓越的性能,例如高效计算意味着计算资源,例如运行时间和计算数量
量子物理学将我们对小世界的理解倒闭,就像拼图插入到位一样。出生于20世纪初期的突破,这项激进科学有助于我们掌握原子和亚原子尺度上发生的事情。它的思维弯曲原则吹走了古典思想和催生的创新,具有深厚的哲学意义。一个关键概念是波颗粒二元性:像电子这样的粒子可以是波和粒子。这种怪异是由阿尔伯特·爱因斯坦(Albert Einstein)弄清楚Light的粒子侧时首先发现的,而Louis de Broglie则表明,即使颗粒也可以像波浪一样行为。这模糊了粒子和量子水平的波之间的界线。量化是另一个至关重要的想法 - 某些物理价值(例如能量)仅在离散的块中。Max Planck首先提出了这个概念,当他通过建议能量出现在称为Quanta的数据包中,从而解决了黑体辐射问题。后来,Niels Bohr将其应用于原子,显示了电子如何在特定能级之间跳跃。海森伯格不确定性原则指出,我们不知道两种属性,例如位置和动力,同时具有无限的精度。这种破坏了古典的决定论,将固有的不确定性引入量子世界。这就像试图查明超速弹 - 您可以接近,但永远不会钉住它。最后,叠加让量子系统一次在多个状态下,直到我们对其进行测量。想象一下同时在两个地方做两件事!这种基本财产支撑着许多量子物理学对现实最令人惊讶的主张。(注意:原始文本是用偶尔的拼写错误重写以遵守指定概率的。)物理学家对微小颗粒在量子水平上的行为着迷,在量子水平上,发生了奇怪的现象和隧道的发生。量子力学表明这些颗粒存在于多个状态,直到观察到,并且测量行为本身会影响其性质。这是通过诸如双缝测试之类的实验证明的,在观察时粒子的行为不同。量子场理论试图在一个框架内统一所有基本力量,从而揭示了物质和能量之间的复杂舞蹈。**纠缠**纠缠是一种奇怪的现象,其中颗粒被连接起来,在巨大的距离上瞬间相互影响。这违反了时空的经典思想,并被称为“远处的怪异动作”。纠缠粒子用于加密和计算等量子技术,从而提出了有关信息传输限制的深刻问题。**观察者效应**观察者效应突出了观察与现实之间的相互作用。在实验中,当观察到与未观察到的,具有挑战性的经典观念时,粒子的行为可能会有所不同,即现实独立于测量。量子力学表明,观察行为本身在塑造量子系统的性质中起作用。**量子隧道**量子隧道允许粒子穿过由于波浪状的行为而在经典上是无法克服的障碍。这种现象是许多物理过程和技术(包括核融合和电子设备)的基础。**互补原理**互补原理指出,量子实体具有双重特性 - 例如波浪状和粒子样行为 - 无法同时观察到。这个概念调解了量子力学中明显的矛盾,强调了对多种观点完全理解量子现实的需求。**量子场理论**量子场理论将量子力学扩展到场,提供了描述自然基本力量的统一框架。通过探索物理和能量之间的复杂舞蹈,物理学家继续揭开量子世界的奥秘。量子场理论(QFT)是基于粒子物理学标准模型的理论框架,从基础领域的粒子行为提供了全面的解释。QFT揭示了这些场的激发粒子是如何通过交换携带力的粒子(例如电磁力的光子)和强核力量的振动而相互相互作用的。通过众多实验,QFT已实现了已得到广泛确认的精确预测。量子力学的原理,包括波粒二元性,能量的量化和不确定性原理,构成了现代物理的基础。对量子物理学的这种基本理解重塑了我们对微观世界的理解,揭示了一种以深远的相互联系,概率和丰富现象为特征的现实,这些现象挑战了古典直觉。这些概念驱动了技术创新,例如半导体,激光器和量子计算机。对量子力学的持续研究继续推出对宇宙基本本质的新见解,既推动了科学进步又推动哲学探究。探索量子原则不仅加深了我们对物理定律的理解,而且还扩大了人类的知识和技术能力。本课程是本科量子物理序列的第一部分,引入了量子力学的基本原理。它涵盖了一维和三维设置中量子物理学,波浪力学和Schrödinger方程的实验基础。材料探索了诸如潜在井,谐振传播,散射和中心电位之类的主题。本课程基于Zwiebach的教科书“掌握量子力学”(2022),该课程对该主题提供了全面的处理。演讲与亚当斯课程(2013)的覆盖深度和关注特定主题的不同之处。两个课程涵盖了类似的材料,但它们具有不同的观点和问题集。注意:我应用了“写为非母语说话者(NNE)”的重写方法来维持原始含义和音调,同时将语言调整为非本地人英语说话者的水平。
量子力学定律是在大约一百年前形成的,取代了牛顿和麦克斯韦的经典定律。从那时起,量子力学就被非常成功地应用于理解非常广泛的观测和系统。量子力学定律在预测和解释几乎所有已知物理现象方面取得的成功令人震惊。然而,尽管取得了巨大的成功,它仍然是一个神秘的理论,波粒二象性、互补性、测量的概率性质、量子干涉和量子纠缠等概念仍然受到热烈讨论。然而,量子力学之所以成为一门迷人的学科,不仅仅是因为它在解释所有已知现象方面取得了显著的成功。即使在今天,仅仅了解基本假设就能产生令人震惊的新想法和新设备,这确实令人惊叹。例如,仅仅了解互补原理就可以实现完全安全的通信系统,或者了解单光子的分束器可以实现高度违反直觉的通信协议,而传输通道中不存在任何粒子,或者量子纠缠的资源可以产生新颖的量子计算算法。因此,仅凭基本的物理和数学知识,就可以传达量子力学的基础以及一些令人难以置信的应用,例如量子通信和量子计算。在这种背景下,有趣的是,是否有可能向物理和数学知识有限的人传达量子力学的基本概念及其惊人的应用。2018 年秋季,我在德克萨斯农工大学为新生开设了一门量子力学课程。这些刚从高中毕业的学生在学习通常的力学和电磁学课程之前先学习了这门课程。这本书源于这门课程的讲义。本书的主要目的是为具有高中物理和数学背景的人以几乎独立的方式介绍量子力学。本书挑战了人们的普遍看法,即量子力学是一门高度数学化和抽象的学科,没有高级数学知识的人无法理解。本书除了最后一章关于薛定谔方程的内容外,完全是基于代数的。本书力求从非常简单的想法和基本的数学工具中得出一些惊人的结果。理想情况下,每一章都提供非常违反直觉且有趣的结果。本书可用作本科生量子力学或量子信息学课程的教材。然而,对于那些不熟悉但想了解量子力学基础领域最近和正在进行的一些令人着迷的发展以及其在量子通信和量子计算等领域的应用的人来说,这也是一本有用且通俗易懂的书。这本书分为四个部分。在介绍性章节之后,接下来的三章将介绍一些基本的数学工具,如复数、矢量分析和概率介绍以及粒子和波的经典描述。在