复杂的听觉场景构成了一个挑战,对倾听的倾听,使听众的感知决策更加慢和不确定。我们如何从与聆听行为控制有关的皮质网络的动力学中解释这种行为?我们在这里遵循以下假设:在挑战聆听情况下的人类适应性感知得到了对n = 40名参与者(13名男性)样本中的听觉网络的模块化重新配置的支持,他们接受了休息状态和任务功能功能磁共振成像(fMRI)。对空间选择性听觉注意任务的个人滴定的平均准确性约为70%,但在听众的响应速度上产生了相当大的个体差异,并在其自身的知觉决策中报告了信心。全脑网络模块化通过重新设置听觉,cinguloopercular和背注意网络,从静止性到任务增加。特定的,在任务相对于静止状态的任务期间,听觉网络和Cinguloopercular网络之间的互连性减少。此外,背注意网络和CingulooperCular网络之间的互连性增加。这些互连动力学可以预测响应信心中的个体差异,其程度在判断不正确后更为明显。我们的发现在元认知评估中,在挑战性的聆听情况下,听觉和注意力控制网络之间的功能互动与注意力控制网络之间的行为相关性,并暗示了两种功能上可解散的皮质网络系统,这些系统塑造了个人在适应性听力行为中个人之间相当大的元认知差异。
收到总局通用电力的支持信,MEMR,No.t- 682/tl.02/djl.2/2023 2023年2月27日关于印度尼西亚对印度尼西亚可行性研究的ACE拟议活动的支持 - 马来西亚跨境互连和PT的意图。PLN(persero),编号23203/trs.00.01/f01040000/2023关于PLN与ACE合作开发有关印尼的可行性研究的意图 - 马来西亚跨境互连,进行了几次协调会议,进行了几次协调会议,以概述对印度尼西亚跨订单的可行性研究的参考条款 - 马来西亚和2)印度尼西亚卡利曼坦 - 马来西亚沙巴。同时,ACE也成功地与谅解备忘录下的马来西亚公用事业(TNB&and SESB)互动,以加入可行性研究的发展。
基于液体金属(LM)的可拉伸印刷电路板的高密度互连(HDI)技术对于扩大其适用性至关重要。HDI技术提供了高分辨率的多层电路,具有高密度的组件,这是下一代神经探针以及超声波和传感器阵列所必需的。这项研究提出了一种使用激光雕刻的微凹槽的HDI技术,并在硅酮中使用保护性升力 - 聚乙烯醇(PVA)和随后的显微镜LM粒子喷雾沉积。这种方法实现了高分辨率的LM模式,并同时实现了组件的多层连接性和高密度集成,即实现HDI技术。使用可伸缩的0201 LED显示器证明,密度为每毫米2的六个铅和一个耳蜗植入物(CI)电极阵列。所证明的CI制造有可能以提高精度和吞吐量的植入物的全自动印刷电路板制造。植入豚鼠中的植入物表明,CI能够使用高质量的电气听觉脑干反应(EABR)和电气复合动作电位(ECAP)激活听觉神经元。此外,LM互连的U形横截面比正常矩形横截面具有更高的电路机械冲击力。
站点控制意味着必须在提交互连请求之日起至少10年的时间内开发,建造,运营和维护该设施的必要土地权利。可以通过建立文件来证明站点控制:(1)所有权,租赁权益或开发足够规模的地点以建造和运营该设施的权利; (2)购买或购买足够尺寸的租赁地点以构建和运营设施的选择;或(3)任何其他文档清楚地证明了互连客户占用足够大小的站点以构建和操作设施的地点的权利。“必要土地权利”一词限制了该站点用于相互排斥的项目,但除了用于工厂的使用之外,没有限制该网站的多用途应用程序,例如农业,牧场等。ISO将在其OASIS或公共网站上为每种设施类型的种植面积和其他适用参数维护。
意大利许可证:意大利许可的申请于2023年8月提交,并于2024年1月由意大利部(MASE)正式启动了单一授权法令。在2024年4月,在意大利启动了30天的公众咨询的过程,并在电子网站和意大利报纸上发表了通知。ICM目前正在收到并回复不同的意大利 /西西里利益相关者的各种查询。
鉴于该技术的新兴性质,MISO 对电网形成 BESS 采取的分阶段方法是合适的。NG Renewables 总体上支持幻灯片 5 和 7 中概述的框架。从基本功能开始,并保留更高级的功能(如黑启动)以供将来集成,可以避免繁重的要求,这些要求会阻碍 MISO 采用电网形成 BESS。NextEra 很高兴有机会为 MISO 的电网形成 (GFM) 电池储能系统性能框架、能力要求和测试模拟要求提供支持。NextEra 总体上支持 MISO 在这一领域的工作,并认为这是电池存储向前迈出的重要一步。NextEra 敦促 MISO 确保研究和实施过程不会以任何方式延长互连时间表。
对拟议动作的描述:Bonneville电力管理局(BPA)建议在BPA的Murray变电站中安装遥测设备的接线,并在BPA的控制中心执行相关编程,以互连Snohomish公共公用事业区(PUD)25 MW大型发电机互连电池储能系统(BESS)请求。集成点是Snohomish Pud的新型12.47千万千伏特(KV)交叉风,由BPA Murray 115kV变电站提供。所有BPA工作都限于变电站和控制中心的内部,并且不提出地面干扰。
项目名称 用于传感和光学互连的硅光子集成电路 负责人 曾汉基教授(电子工程系) 工学院院长、伟伦电子工程学教授 成员 易丹博士 博士(电子工程),2022 年 陈吴大卫博士 博士(电子工程),2023 年 周学桐博士 博士(电子工程),2023 年 项目描述 本项目旨在开发下一代硅光子集成电路技术,该技术可以提高系统性能,使其超越纯微电子集成电路所能达到的水平。 该团队的核心专业知识是硅光子学,这是中大二十多年的研究成果。作为亚洲最早开发硅光子学的团队之一,该团队拥有一些最先进的硅光子设计,可用于提高通讯设备、3D 成像和量子信息系统的性能。遵循微电子行业无晶圆厂设计业务模式的成功范例,我们将专注于设计,同时利用现有的代工厂制造光子集成电路 (PIC)。该团队将构建子系统,用作其他公司生产的产品的核心组件。他们的产品将包括用于数据中心互连的基于硅光子的 1.6 和 3.2 TbE 光学引擎,以及用于医疗设备和工业计量的小型手持式光学相干断层扫描 (OCT) 成像系统。创始成员包括电子工程系的曾汉基教授、易丹博士、陈吴博士和周学桐博士。曾汉基教授是工程学院院长和伟伦电子工程教授,在硅光子学方面拥有超过 23 年的研发经验,包括成功将新产品推向市场。易丹博士于 2022 年获得中大博士学位,并荣获工程学院最佳论文奖。 David WU Chan 博士于 2023 年获得博士学位,并开发出最先进的工作速度超过 400Gb/s 的硅调制器。周学桐博士于 2023 年获得博士学位,并开发出最先进的先进光纤到芯片接口,该接口可提供同类最佳的性能,具有高耦合效率(耦合损耗小于 0.9dB)和宽工作带宽。
SRP的服务领域正在经历爆炸性的增长。Maricopa县是美国增长最快的县之一。这种巨大的增长,增加了客户通过无碳资源来满足其能源需求的兴趣,而SRP对减少碳排放的承诺促使人们需要为我们的一代产品组合增加大量的无碳资源。在接下来的十年中,SRP预计需要添加数千兆瓦(MW)的太阳能和一千多个电池存储。srp具有连接到传输系统的大型实用规模太阳能和存储系统的经验,以及客户位置的屋顶和/或电池安装,主要集中于抵消幕后客户负载。SRP有兴趣探索项目,该项目直接连接到其12KV分配系统,SRP可以控制该项目,以提高灵活性,可靠性和弹性。
Sara Iraci 等人在本文中,我们介绍了一种基于 NbxTi(1-x)N (NbTiN) 的超导双金属级 (2ML) BEOL 单元工艺,该工艺是在 imec 的 300 毫米试验线上使用半镶嵌流程和 193i 光刻技术开发的。该单元工艺的特点是直接金属蚀刻线的最小临界尺寸 (CD) 为 50 nm,浅平面化通孔的最小 CD 为 80 nm,沉积温度为 420 °C,与 CMOS BEOL 电介质兼容。50 nm NbTiN 线的归一化线电阻表明,95% 的器件符合预期电阻 800-1200 Ω/µm,与覆盖膜电阻率一致。低温测量表明,NbTiN 导线和通孔的临界温度为 12-13.5 K,临界电流密度为 80- 113mA/µm2。▪ 低电阻堆叠通孔金属化用于未来的互连,Marleen H. van