太阳能*奖励是一个基于生产的激励计划。参与的客户也将获得NEM福利。每月或年付款给太阳能系统的所有者,以换取太阳系生产的能源的可再生能源信用(REC)。•激励付款是基于太阳系生产或期望每月生产的千瓦时数量。•具有生产计的系统具有基于PV Prod帐户中捕获的实际生产的激励措施。•没有生产计的系统(10kW DC且更少),每年根据太阳能应用程序中列出的NREL PV瓦值的KWH估算来支付。
在过去的几十年中,已经使用多种不同的波导材料研究了光子综合电路(PIC),并且每种都在特定的关键指标中脱颖而出,例如有效的光发射,低传播损失,高电位效率和批量产生的潜力。尽管进行了持续的研究,但每个平台都表现出继承的缺点,结果刺激了混合和异质整合技术的研究,以创建更强大的跨平台设备。这是结合每个平台的最佳属性;但是,它需要针对材料系统的每种不同组合的特殊设计和其他制造过程的专门开发。在这项工作中,我们提出了一种新型的混合整合方案,该方案利用3D-Nanoprint的插入器实现光子chiplet互连系统。此方法代表了一个通用解决方案,可以很容易地在任何材料系统的芯片之间进行杂交,每个材料系统都在其自己的技术平台上制造,更重要的是,单个芯片的既定过程流程没有变化。开发出具有亚微米准确性的快速印刷过程,以形成芯片耦合框架和纤维引导漏斗,实现高达5:2的模式场差异(MFD)转换率(从SMF28光纤到4 µm×4 µm模式在Polymer waveide中,我们的知识尺寸为afters afters to Propuly Waverguide smf28纤维到4 µm×4 µm模式)纳米折叠成分。此外,我们在1480 nm至1620 nm之间的140 nm波长范围内,在硅和INP芯片之间证明了具有2.5 dB的死与DIE耦合损失的光子芯片互连系统。该混合集成计划可以桥接不同的波导材料,从而支持更全面的跨平台集成。
• 了解将分布式能源项目连接到服务公用事业电网的典型互连流程。 • 获得为分布式能源项目选址的宝贵策略,以最大限度地降低互连风险和成本。 • 了解特定于技术的互连问题。 • 了解可能需要修订以符合联邦法规的互连协议和常见条款。
摘要本文介绍了高性能电动汽车(EV)同步不情愿电动机(Synrm)驱动器及其车辆到网格(V2G)和车辆对微电网(V2M)双向操作的开发。电池通过双边接口Boost-Buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck-link电压良好的驾驶性能在较宽的速度范围内建立。 电动机效率在额定负载附近为92.3%。 在空闲条件下,可以安排嵌入式接口转换器和电动机驱动器的逆变器,以通过添加外部LC低通滤波器来执行G2V/V2G操作。 可以在G2V模式下从电源中充电,并具有良好的线拉功率质量。 另外,在V2G模式下,电池可以以良好的电流波形质量将预设电源发送回实用程序网格。 此外,相同的原理图也可以进行M2V/V2M操作。 基于风开关的利用发电机(SRG)的微电网用作测试工厂。 通过安排的控件成功地提供了电动流动的EV移动储能应用程序,以有效利用可再生能源。 测量结果以所有功率阶段和操作案例令人满意的性能来验证正常操作。良好的驾驶性能在较宽的速度范围内建立。电动机效率在额定负载附近为92.3%。在空闲条件下,可以安排嵌入式接口转换器和电动机驱动器的逆变器,以通过添加外部LC低通滤波器来执行G2V/V2G操作。可以在G2V模式下从电源中充电,并具有良好的线拉功率质量。另外,在V2G模式下,电池可以以良好的电流波形质量将预设电源发送回实用程序网格。此外,相同的原理图也可以进行M2V/V2M操作。基于风开关的利用发电机(SRG)的微电网用作测试工厂。通过安排的控件成功地提供了电动流动的EV移动储能应用程序,以有效利用可再生能源。测量结果以所有功率阶段和操作案例令人满意的性能来验证正常操作。
这项工作部分由可持续能源联盟有限责任公司资助,该公司是美国能源部国家可再生能源实验室 (NREL) 的管理和运营承包商,属于美国能源部“加速系统集成标准 II (ACCEL II)”项目,属于电网性能和可靠性主题领域,重点关注配电网。
在本病例对照研究中的讨论中,我们估计了总抗氧化能力,以衡量人体针对氧化应激的防御机制,丙二醛是氧化损伤的标志,以及空腹血浆葡萄糖在非糖尿病和糖尿病患者中的标志。我们的结果表明,与非糖尿病群相比,糖尿病基团暴露于更高的氧化应激,这是由于TAC的减少和MDA的增加所示。这些发现与Najafi等人先前的研究一致。[4],Rani&Mythili [5]和Pieme等。[6],其中糖尿病患者表现出较低水平的抗氧化剂和较高水平的ROS标记物(如MDA)。Vincent等。[11]表明,DM中的慢性高血糖刺激了ROS的过量生产,ROS的生产过多,从而攻击细胞中的脂质,并导致脂质过氧化产物(如MDA)的产生和释放增加。[5,12]另外,DM中的慢性高血糖会损害人体的抗氧化剂防御机制,从而导致TAC减少。[11]结果,身体在消除ROS方面的效率降低,允许氧化应激持续存在。TAC的减少进一步加剧了脂质过氧化和MDA的积累。
本文档仅用于信息目的,以支持关税的规定和所提供的服务的适用。MISO可以随时自行决定修改或终止本文档,恕不另行通知。虽然Miso将尽一切努力更新本文档并在可行的一项尽快告知其用户更改,但用户有责任确保与关税和其他适用文档一起使用此文档的最新版本,包括但不限于适用的NERC标准。本文件中的任何内容均不得解释为矛盾,修改或取代关税。MISO对他人对此文件的任何依赖,或此处包含的任何错误,遗漏或误导性信息概不负责。如果本文件之间发生冲突,包括任何定义,以及关税,NERC标准或NERC术语表,关税,NERC标准或NERC词汇表均应占上风。如果关税与NERC标准之间发生冲突,或NERC术语表之间的关税应占上风,直到或除非联邦能源监管委员会(“ FERC”)命令其他命令。任何感知的冲突或问题都应将其直接针对法律部门。
摘要 本文件提出了解决安全相关仪器和控制 (I&C) 系统中互连信号线上传导电磁干扰 (EMI) 和射频干扰 (RFI) 影响的建议和相关技术基础。橡树岭国家实验室一直致力于协助美国核管理委员会核管理研究办公室制定有关 EMI/RFI 免疫力和电涌耐受能力 (SWC) 的监管指导技术基础。先前的研究工作已就以下方面提供了建议:(1) 电磁兼容性设计和安装实践、(2) 认可 EMI/RFI 和 SWC 测试标准和测试方法、(3) 确定核电站的环境电磁条件,以及 (4) 制定适用于将安装安全相关 I&C 系统的位置的推荐电磁操作范围。当前的研究重点是 I&C 系统对互连信号线上传导 EMI/RFI 的敏感性。在之前关于建立安全相关 I&C 系统中 EMI/RFI 和 SWC 技术基础的研究中,信号线敏感性的覆盖范围被确定为一个未解决的问题。本报告提供的研究结果将用于建立技术基础,以认可美国国防部和欧洲电工标准化委员会针对信号线敏感性的测试标准和测试方法。此外,根据可用的技术信息提出了有关操作范围的建议。
如果根据住宅服务关税从公司获得服务,则客户应在客户打算将其设施互连到公司设施的日期之前至少向公司提交标准互连协议。如果客户根据商业服务关税收到服务,则客户应在客户打算将其设施互连到公司设施的日期之前至少向公司提交标准互连协议。标准互连协议必须完全完成,以使通知有效。客户应具有在通知之前完成互连所需的所有设备。如果已邮寄,通知日期应为邮寄标准互连协议后的第三天。必须要求客户提供指示通知邮寄给公司的日期的文件。公司应根据要求向客户提供标准互连协议的副本。