由于小卖部是 Jollibee 价值链中的关键组成部分,因此必须将停机时间保持在绝对最低限度。为确保电网电源中断最小,目前正在调试两台由 QSK60 发动机驱动的 Cummins Power Generation 1750DQKB 发电机组和一台由 QSK60 发动机驱动的 Cummins Power Generation 2 MW DQKC 发电机组。另一家小卖部的另外两台由 VTA28 发动机驱动的 Cummins Power Generation 603DFGB 发电机组正在拆除并移至新工厂,使发电机组总数达到五台,以提供 7 MW 的备用电源。新小卖部的总需求约为 7 到 10 MW。
燃气轮机(或喷气发动机)是一种将能量丰富的液体燃料转化为强大推力(称为推力)的机器。五台小型燃气轮机发动机提供的推力足以让 Gravity Jet Suit 飞行员在空中飞行和操纵。喷气发动机使用与汽车发动机相同的科学原理:它通过称为燃烧的化学反应将燃料与空气燃烧。这会释放能量。燃气轮机旨在吸入大量空气并将其与大量燃料一起燃烧(大约 50 份空气与 1 份燃料),因此它比汽车发动机产生更多动力的主要原因是它可以燃烧更多燃料。由于进气、压缩、燃烧和排气同时发生,喷气发动机可以一直产生最大功率。然而,这对发动机的机械可靠性不利。
Denoth 雪水仪是一种电子设备,可在 20 MHz 下测量雪的介电常数的实部。通过雪水和密度的经验关系可以计算出雪体积湿度(Denoth,1989)。必须单独测量密度才能输入到方程中。这是使用 100 cm3 矩形盒式切割器完成的,并在电子秤上称量样品。这些测量是在雪块的侧壁进行的,图 2 和 3 CRREL 库存中有五台 Denoth 仪表。在实验室环境中,每台都用于检查它们当前的准确性和相互校准?两台 Denoth 仪表可供现场使用。一台属于 CRREL,另一台属于另一个机构。距离地面 5cm 以内的测量值会受到下层表面介电特性的影响,应谨慎解释。
自1999年以来,我们积极致力于运载火箭部件的开发,最初通过创建第三枚韩国探空火箭(KSR-III)和万向节发动机驱动装置开展我们的航天运载火箭业务。最近,我们成功交付了五台 75 吨级液体火箭发动机、一台 7 吨级发动机以及其他集成到 Nuri(KSLV-II)的关键部件,该火箭于 2022 年成功完成了第二次发射。凭借我们在航天运载火箭开发方面的卓越质量竞争力和专业知识,我们于 2022 年 10 月获得了韩国运载火箭发展项目。根据该项目,我们将在 2027 年前生产三辆 Nuri 运载火箭并执行四次发射。2023 年 5 月,我们首次作为民间系统集成商参与了第三次 Nuri 发射,承担了总体生产管理和联合发射运营的角色,最终成功完成了第三次发射。
提供完整的卫星和轨道碎片普查始于高效探测这些物体并可靠地确定其轨道(空间域感知或 SDA)。荷兰皇家空军 (RNLAF) 表示需要开发一种能够为 SDA 做出贡献的系统。广域、高节奏的天文勘测监测了大部分天空,为轨道确定提供了一个有前途的平台。例如,智利的 MASCARA 仪器使用五台固定的广角摄像机以 6 秒的节奏连续监测当地夜空。在这些图像中,卫星由于其长条纹状外观而易于与其他物体区分开来。但是,为了最大限度地发挥这些丰富数据的实用性,应几乎即时提取有关卫星的信息。我们开发了一种新颖的管道,可以几乎即时自动检测卫星条纹并从天文数据中提取位置信息。我们在本文中解决的主要挑战如下:处理速度(即跟上传入的数据流)和卫星天空位置自动提取的准确性。
研究问题是如何在制造工厂中选择关键设备的维护程序。本文的目的是为锻造生产线的关键设备选择维护专业,包括五台机器。研究方法是定量建模和仿真。主要的研究技术是故障(TBF)与修复时间(TTR)之间时间的概率建模以及整个系统的仿真,以计算必要的可靠性参数。使用现场数据和基于故障的决策模型可以减少对主要租赁策略决策的继承风险和不确定性(Ge等,2017; Panchal等,2017; Seiti et al。,2017; Seiti et al。,Seiti等,2018a; Seiti et eiti; Seiti等人,2018b)。该研究采用了故障率函数,可以将其视为设备在整个生命周期中的可靠性的指示(Jónás等,2018)。主要新颖性是一种合适的结构,可帮助选择仅基于经验数据的关键设备的维护策略。该方法依赖于故障率函数的行为。该研究计算了个人和总体平均时间失败时间(MTBF),平均修复时间(MTTR),可用性以及每个生产订单最可能的失败数量,这些失败次数遵循泊松过程。
桌面纤维挤出设备 (FrED) 主要用于学习智能制造和反馈控制系统。作为教育套件,FrED 设计紧凑、安全、低成本,同时提供功能丰富的数据。然而,目前 FrED 的成本仍然太高,因此需要进一步设计和开发以降低成本,使个人学习者能够负担得起。FrED 开发的一部分是建立一个 FrED 工厂进行大规模生产,以便为线下和线上课程提供实物套件。本论文根据收集到的用户需求提出了一种工厂设计,其中包括办公室和生产区,以有效支持大规模生产。通过了解和执行每个组件所需的所有制造流程和物流的时间研究,设计和建模了物料流和生产线。还对零件制造过程进行了调度,以最大限度地缩短总生产时间。根据提出的生产线建模,一台 FrED 和五台 FrED 的生产时间预计分别为 1 天 5 分钟和 1 天 163.75 分钟。这项关于 FrED 生产的初步研究可用于估计更大批量生产所需的产量,并进一步改进制造工艺以减少所需的生产时间,从而提高未来大规模生产的吞吐率。
本研究分析了基于闭环布雷顿-焦耳循环并与聚光太阳能发电 (CSP) 电厂集成的创新型泵送热能存储 (PTES) 系统的预期性能。集成的 PTES - CSP 电厂包括五台机器(两台压缩机和三台涡轮机)、一个中央接收塔系统、三个水冷却器和三个热能存储 (TES) 罐,而氩气和花岗岩卵石分别被选为工作流体和存储介质。首先对集成电厂的主要部件进行了尺寸测量,以设计一个集成的 PTES-CSP 电厂,其标称净功率为 5 MW,标称存储容量为 6 等效运行小时数。已经在 MATLAB-Simulink 中开发了特定的数学模型来模拟不同操作条件下的 PTES 和 CSP 子系统,并评估三个储罐在充电和放电过程中的温跃层剖面演变。最终开发了一种控制策略,根据电网服务请求、太阳能可用性和 TES 水平来确定工厂的运行模式。考虑到 PTES 子系统在意大利能源市场的整合,分析了该系统在夏季和冬季的性能,以进行套利。结果证明了 PTES 系统与 CSP 工厂混合的技术可行性以及集成系统参与能源套利的能力,尽管与单一 PTES 系统(约 60%)相比,往返效率较低(约 54%)。
甘蔗厂被认为是通过增强的风化(EW)具有很高的二氧化碳去除(CDR)的潜力,但尚未定量评估。这项研究的目的是1)通过EW评估各种甘蔗厂灰分的CDR电位,以及2)研究土壤条件和铣削灰分对CDR的影响。这是通过表征澳大利亚五台灰烬的物理和化学性质并使用一维反应性传输模型模拟风化的。该模型被列为模拟,以模拟100吨/公顷的湿灰(47 - 65%水)或压碎玄武岩的风化,在各种土壤pH和二氧化碳二氧化碳部分压力(PCO 2)的各种组合下(PCO 2)。在两级阶乘设计中进行了灵敏度分析,以测试pH,pH缓冲,材料表面积,浸润速率,植物摄入养分,有机物阳离子阳离子交换表面和PCO 2对建模CDR的影响。磨坊灰分的模拟CDR明显小于玄武岩(p <0.001),但在灰烬之间大多没有显着差异(p> 0.05)。铣削灰分的风化已累积地去除0.0 - 4.0 t CO 2 /ha(0.00 - 0.040 t CO 2 /t湿灰),类似于文献中建模的一些玄武岩和橄榄石。在大约5年内实现了磨坊灰分的理论最大CDR(基于适用的可风化材料)。CDR的估计值因条件而变化。至少当初始土壤溶液pH值最低(4.5,未封闭)时,pH为6.5或更少,持续缓冲且PCO 2较低(600 ppm)。cdr也显着降低。此处量化的pH和pH缓冲的效果可以解释酸性土壤现场试验中EW的低测量CDR,并突出了对pH缓冲能力进行更现实的建模的需求。总体而言,Mill Ash通过EW表现出很高的CDR潜力,尤其是在考虑生命周期益处的情况下,尽管必须在现场进行验证。
变革之风已然吹起,世界如今正致力于新技术,其中可再生能源是重要的一项。考虑到商业和工业对石油和天然气的消耗,每个人都意识到需要一些替代能源来生产能源。风也是发电资源之一。风力涡轮机是一种将风的动能(也称为风能)转换为机械能的装置;这一过程称为风能。如果机械能用于发电,则该装置可称为风力涡轮机或风力发电厂。如果机械能用于驱动机器,例如磨碎谷物或抽水,则该装置称为风车或风泵。同样,当它用于给电池充电时,它可能被称为风力充电器。作为一千多年风车发展和现代工程的成果,当今的风力涡轮机有各种垂直和水平轴类型。最小的涡轮机用于电池充电或船上辅助电源等应用;而大型电网连接的涡轮机阵列正成为风力发电(生产商业电力)越来越重要的来源。巴基斯坦自上个十年以来一直面临电力短缺的问题,为了解决这一问题,政府采取了可再生能源方面的措施,并表现出浓厚的兴趣,一份调查报告显示,巴基斯坦在伊斯兰堡、塔塔和卡拉奇地区拥有理想的风力走廊。运行涡轮机所需的最低风速为 3~4 公里/秒;幸运的是,我们的风力走廊的风速为 6~7.5 米/秒,这是风力涡轮机的理想风速。调查报告显示,巴基斯坦可以从风能和太阳能中生产 300,000 兆瓦的电力,而巴基斯坦的实际需求估计为 22,000 兆瓦。巴基斯坦的第一个 50 兆瓦风电场项目由土耳其公司 Zurlo Enerji 工程公司在 Jhampir(信德省)启动,并完成了五台风力涡轮机,其中一台已卸载。每台涡轮机的容量为 1.2 兆瓦;目前已有四台涡轮机投入运行,发电量为 4.8 兆瓦。遗憾的是,由于一些当地问题以及财务问题,该项目已关闭。 Fauji Fertilizer Company Energy Limited (FFCEL) 的 49.5 兆瓦风力发电场项目被授予 Nordex(德国)和 Descon Engineering Ltd.(巴基斯坦)。两家公司都全神贯注地开始了该项目,不幸的是,大约 50 名武装的当地入侵者严重殴打了项目团队,导致项目暂停执行三个月。2011 年 7 月,工作恢复。33 台风力涡轮机(每台 1.5 兆瓦)的安装于 2012 年 7 月成功完成,该项目目前处于调试阶段,即将投入运营。