原发性肝癌新发病例数为 90.6 万,在恶性肿瘤增长中位居第六位。此外,肝癌死亡人数为 83 万,在死亡率方面位居第三位(Sung et al.,2021)。肝细胞癌 (HCC) 是原发性肝癌的最重要形式,约占肝癌病例的 90%(Anwanwan et al.,2020)。多种风险因素可导致原发性肝癌的发展,包括乙型肝炎病毒 (HBV) 感染、丙型肝炎病毒 (HCV) 感染、纤维化慢性肝损伤、黄曲霉毒素 B1 和过量饮酒(Akinyemiju et al.,2017;欧洲肝脏研究协会和欧洲癌症研究与治疗组织,2012 年)。 HCC从具有微小基因突变的异常增生病变持续发展到HCC晚期,表现出涉及多种分子的显著分子异质性(Marquardt et al., 2015)。HCC发展多个阶段的广泛肿瘤异质性阻碍了患者的分层和有效治疗(Giannelli et al., 2016)。因此,探索HCC的肿瘤异质性将有助于对患者进行分层和有效治疗。HCC的肿瘤转化通常起源于肝细胞和祖细胞,两者都是上皮细胞类型。这些上皮细胞的可塑性变化通常被称为上皮-间质转化(EMT),增加了细胞异质性的复杂性(Giannelli et al., 2016)。癌细胞中的EMT程序可以在侵袭和转移过程中以不同程度暂时或稳定地激活。粘附分子高表达可增强细胞的迁移能力和侵袭性。大量证据表明,EMT在癌症侵袭和转移中起着重要作用(Nieto et al.,2016;Thiery et al.,2009;Thiery,2002;Hanahan and Weinberg,2011)。通过分析恶性上皮性肝细胞的各种EMT表型,研究人员可以评估HCC的复杂性和细胞异质性。很少有研究在大量的活检样本中研究几种EMT标志物,因此很难仅根据单一标志物来判断EMT的发生(Yang et al.,2009)。E-cadherin与occludin或细胞角蛋白一起代表了最常用的上皮特征标志物,而N-cadherin和vimentin是最常见的EMT标志物。
摘要:单重态裂变 (SF) 是量子信息科学中一种很有前途的方法,因为它可以通过与温度无关的光激发产生自旋纠缠的五重态三重态对。然而,在室温下合理实现量子相干性仍然具有挑战性,这需要精确控制三重态对的方向和动力学。本文表明,通过在大环内平行且紧密靠近地排列两个并五苯发色团,可以在室温下实现五重态多激子的量子相干性。通过在醛修饰的并五苯衍生物之间建立动态共价席夫碱键,可以高产率地选择性合成大环平行二聚体-1 (MPD-1)。MPD-1 在聚苯乙烯薄膜中表现出快速亚皮秒 SF 并产生自旋极化的五重态多激子。此外,MPD-1五重态的相干时间T2即使在室温下也长达400 ns。这种大环平行二聚体策略为未来利用分子多层量子比特的量子应用开辟了新的可能性。
日本福冈——在《Science Advances》杂志上发表的一项研究中,九州大学工程学院副教授柳井伸宏领导的一组研究人员与九州大学宫田清副教授和神户大学小堀康弘教授合作,报告称他们已经在室温下实现了量子相干性:量子系统能够随着时间的推移保持明确状态而不受周围干扰影响的能力。这一突破是通过将发色团(一种吸收光并发射颜色的染料分子)嵌入金属有机骨架(MOF,一种由金属离子和有机配体组成的纳米多孔晶体材料)中实现的。他们的发现标志着量子计算和传感技术的重大进步。虽然量子计算被定位为计算技术的下一个重大进步,但量子传感是一种利用量子比特(经典计算中比特的量子类似物,可以存在于 0 和 1 的叠加中)量子力学特性的传感技术。可以采用各种系统来实现量子比特,其中一种方法是利用电子的固有自旋(与粒子磁矩相关的量子特性)。电子有两种自旋状态:自旋向上和自旋向下。基于自旋的量子比特可以存在于这些状态的组合中,并且可以“纠缠”,从而允许从另一个量子比特推断出一个量子比特的状态。通过利用量子纠缠态对环境噪声极其敏感的特性,量子传感技术有望实现比传统技术更高的分辨率和灵敏度的传感。然而,到目前为止,将四个电子纠缠并使其对外部分子作出反应,即使用纳米多孔 MOF 实现量子传感一直具有挑战性。值得注意的是,发色团可用于在室温下通过称为单重态裂变的过程激发具有所需电子自旋的电子。然而,在室温下会导致存储在量子比特中的量子信息失去量子叠加和纠缠。因此,通常只有在液氮水平温度下才能实现量子相干性。为了抑制分子运动并实现室温量子相干性,研究人员在 UiO 型 MOF 中引入了基于并五苯(由五个线性稠合苯环组成的多环芳烃)的发色团。“这项研究中的 MOF 是一种独特的系统,可以密集地积累发色团。此外,晶体内的纳米孔使发色团能够旋转,但角度非常受限,”Yanai 说道。
人工智能 (AI) 有望彻底改变家庭医学,为实现五重目标提供一种变革性方法。本文探讨了家庭医学适应快速发展的 AI 领域的必要性,重点是其与临床实践的整合。AI 的最新进展有可能显著改变医疗保健。我们主张家庭医学积极参与,引导 AI 技术实现“五重目标”。本文强调了 AI 的潜在好处,例如通过增强诊断工具改善患者治疗效果、通过减轻行政负担改善临床医生福祉、通过分析不同的数据集促进健康公平。然而,我们也承认 AI 存在风险,包括自动化可能偏离以患者为中心的护理并加剧医疗保健差距。我们的建议强调,家庭医学教育需要融入人工智能素养、发展人工智能整合协作机制以及通过跨学科合作制定指南和标准。我们得出的结论是,尽管人工智能带来了挑战,但负责任且合乎道德地实施人工智能可以彻底改变家庭医学,优化患者护理,并在技术驱动的未来中增强临床医生的作用。(J Am Board Fam Med 2024;37:520–524。)
摘要:脑电图 (EEG) 信号分类在开发残疾人辅助康复设备中起着重要作用。在此背景下,从 20 名健康人身上获取脑电图数据,然后进行预处理和特征提取过程。提取 12 个时间域特征后,采用两个著名的分类器,即 K 最近邻 (KNN) 和多层感知器 (MLP)。采用五重交叉验证方法将数据分为训练和测试目的。结果表明,MLP 分类器的性能优于 KNN 分类器。MLP 分类器实现了 95% 的分类器准确率,这是最好的。本研究的结果对于在线开发脑电图分类模型以及设计基于脑电图的轮椅非常有用。关键词:运动想象,脑电图信号,KNN,MLP,ICA。介绍
为了确定 LINC00092 诊断 BC 的特异性和敏感性,我们接下来进行了 ROC 曲线分析,并使用 MedCalc 软件计算了 ROC 曲线下面积 (AUC)。为了进一步评估 LINC00092 在诊断 BC 方面的有效性,我们使用 TCGA 数据库通过逻辑回归模型进行了五重交叉验证。逻辑回归模型的性能是根据其精确度、召回率、准确度和 F1 分数来评估的。高精度反映了 LINC00092 预测 BC 的高精度;召回率是指真阳性数除以实际阳性数;准确度定义为所有病例中正确预测结果的比例。选择 F1 分数作为综合评价指标,因为精度和召回率相互影响,并且它们的值不可能同时达到最佳大值。F1 分数是通过对精度和召回率取调和平均值来计算的。
在本文中,提出了具有高选择性和宽带宽带的紧凑型五重杆置带的超宽带带通滤波器。该过滤器采用近似闭环C形的踏板阻抗谐振器来生成三重置换频带,并使用Hilbert Fractal曲线缝隙和L形谐振器分别创建单个缺口频带。多个缺口带的中心为5.29、6.61、7.92、8.95和9.93 GHz,以消除来自WLAN,C-Band和X波段无线服务的不良干扰。此外,引入了两个传输零,以提高锋利的裙子的选择性高达0.944。该过滤器可以同时表现出高尖锐的选择性和更宽的带宽。该过滤器是在RT/Duroid 5880子策略上制造的(εr= 2.2,厚度= 0.787 mm),并测量以验证仿真结果。模拟和测量都非常一致,显示了过滤器的良好性能。
为了保障公共安全而进行的技术监控(例如,摄像头、传感器、手机、 OSINT)渗透到个人生活的方方面面。在本文中,我们提出了这样一种观点,即人工智能的加入改变了监控生态系统的运作方式,因此值得产生一个新概念:监控人工智能生态系统。监控人工智能生态系统由相互关联的不同参与者(技术、人类、超人类、组织等)组成,所有这些参与者都参与了人工智能辅助的监控任务。它们不仅包含任何技术生态系统的通常复杂性,还包含人工智能的额外复杂性,具有技术和社会方面的新兴特征。我们主张在人工智能生态系统中开展工作时采用多方面视角,并描述(受人类学启发的)理解和解开人工智能监控生态系统的方法。民主控制的人工智能监控的发展需要系统地考虑五重螺旋(公共、私人、民间社会、学术界、自然)中的伦理、法律和社会方面(ELSA)。我们强调明确定义五重螺旋的哪些观点在人工智能监控中被考虑,哪些观点没有被考虑,以实现一套透明的(ELSA)价值观来指导人工智能监控的开发和实施。我们提供了一个示例,说明我们如何在智能城市技术开发和应用的试验场(即所谓的“生活实验室”)的背景下开发和应用(部分)这些方法。在这里,我们采取积极参与学者作为“批判性朋友”的立场,参与复杂的创新和评估过程。我们与该领域的对话伙伴一起,梳理和反思我们所探索的生活实验室设置中蕴含的(公共安全)价值观。最后,我们呼吁人们不要将监控人工智能系统理解为一个需要解决的问题,而要将其理解为一个需要高度多样化的利益相关者讨论的持续过程。
在过去的几年中,在光激发的发色团中,增强的跨系统交叉(EISC)1-3的过程经常被利用,这些传播的发色团经常被用作进入有机彩色团的高旋转状态的一种手段。示例包括二酰亚胺(PDI)4的三胞胎状态或各种发色团 - 自由基化合物的四重奏或五重状态。5 - 10,除了具有基本兴趣之外,后者在新兴的分子旋转基质中的应用也可能具有有希望的特性。例如,已经表明,PDI - 自由基化合物的分子四重奏状态可以用作多级别自旋Qubits,即qudits,用于量子信息科学中的应用。11,12共价连接的发色团中的三重态产量增加 - 稳定的自由基系统对于像沉重的无原子无原子感官感官的应用也有吸引力 - 三胞胎 - 三重三元光子上转化或光动力疗法。13 - 16
本文旨在将斯里兰卡政体的注意力集中在制定印度洋地区 (IOR) 的连贯战略上。本文对印度洋中心秩序的缺失持果断立场,主张以和平区概念为中心制定独特的行为准则。该区域将维护航行自由和所有人可持续利用等核心价值观。与其他关于印度太平洋战略的作品不同,本文通过对战略构想的现实提出全面的论述,提供了一个新的视角。它揭示了尽管 IOR 作为全球渠道具有重要意义,但如何被降级为单纯的战略补充。通过强调这些问题,本文提出了实现斯里兰卡印度洋战略前景的五重方法。这种方法旨在将斯里兰卡定位为印度洋地区可靠的海事利益相关者,有效地服务于其国家利益。