地毯面积 公寓的净可用楼面面积,不包括外墙覆盖的面积、服务井下的面积、专用阳台或走廊面积和专用露天平台面积,但包括公寓内部隔墙覆盖的面积。 解释: 在本定义中,“专用阳台或走廊面积”是指阳台或走廊的面积,视情况而定,该面积属于公寓的净可用楼面面积,供分配者专用;“专用露天平台面积”是指属于公寓的净可用楼面面积,供分配者专用的露天平台面积。
需要定义最大操作压力(MOP)。对于耗尽的储层,停止注入的压力是储层达到初始压力以下时。在某些情况下,注入流体,直到达到初始压力的70%至90%。对于含水层,可以注入液体,直到储层压力达到盖密封压力为止,这是根据覆盖层的毛细管压力(密封)基于毛细管压力计算的压力。盖密封压力低于断裂压力,应在井下使用断裂压力来控制注射,但是为了停止注入,应在储层水平上使用盖密封压力。
除了是开启众多大众市场应用的消费电子设备的关键之外,半导体对于不那么光鲜和友好的系统也是必不可少的。工业环境可能极其恶劣,商业电子产品将无法生存。但是,仍然需要将电子设备添加到机械设备中以增加功能并扩展性能。某些应用必须在商业电子产品中使用的许多材料的熔点之外运行。这些包括飞机和涡轮发动机控制装置,以及用于能源勘探的监视器和井下钻井工具,图 1。这些环境具有极端温度、振动、压力和湿度水平以及其他压力因素。
光纤传感在油气井中的应用。光纤传感有可能彻底改变油气行业的油井和油藏监测。光纤传感器的被动特性、安装成本低廉的潜力以及沿光纤整个长度进行密集分布测量的可能性,都为油气行业带来了诸多好处。安装在油气井中的光纤传感器获取的信息有助于提高效率、安全性和最终采收率。各种光纤传感器能够测量温度、压力、化学成分、应变和声学等物理效应。合适的数据基础设施和处理能力(将这些测量结果转化为有价值的信息)是任何传感系统的关键要素。基础由井中的合适光纤传感器和地面上的询问单元组成。本论文重点介绍基于两种光纤技术的传感硬件的开发:光纤布拉格光栅和瑞利散射。光纤布拉格光栅 (FBG) 是可以沿光纤电缆长度分布的点传感器。低成本、坚固耐用的询问单元是实现基于 FBG 的传感系统成本效益的关键因素之一。本文介绍了用于高温沙漠环境的此类询问单元的成功开发(第 3 章)。这一发展旨在促进低成本商业化实现。这些可以结合专用测试装置在内部进行评估(第 4 章)。分布式声学传感 (DAS) 是一种完全分布式传感技术,它利用标准光纤长度上自然发生的散射点的瑞利散射。反向散射能量可以解释为在整个光纤中实现准麦克风。DAS 近来备受关注,因为它在井下监测(例如压裂监测、流量监测)以及地球物理监测中具有潜在应用。本论文以地球物理应用为重点,描述了合适询问单元的开发(第 5 章)以及新原型在现场试验中的成功验证(第 6 章)。为了进一步扩大地球物理应用范围,需要提高光纤传感电缆对垂直于其轴向方向的地震波的灵敏度(第 7 章)。本论文介绍了此类电缆概念的发展,并介绍了成功的实验室和现场试验结果(第 8 章)。分布式传感技术具有降低成本并提高空间分辨率的潜力。然而,沿电缆长度的连续测量会在从光纤中的光学长度到井下环境中的位置的转换中引入不确定性。虽然已经提出了几种深度校准方法,本论文阐述了一种新方法的开发:磁深度定位器(第 9 章)。在井中安装多个磁铁组件可提供永久的深度参考点,这使其非常适合保证延时井和油藏监测所需的深度精度(第 10 章)。多种光纤传感技术可以在井下环境中组合使用。由此产生的大量沿光纤连续的时间和距离测量为石油和天然气行业的稳健井和油藏监测提供了独特的机会。
使用 ETS 上的 CMA 选项,申请皇家矿产活动 (CMA) 处置/注入授权。一旦获得 AE 批准,则根据《石油和天然气保护法》第 39 节,根据指令 065:常规石油和天然气储层资源申请向 AER 提出申请。如果未选择选项 1 和 2,则必须选择选项 3。必须在 AER 收到声明文件(表明许可证持有人有意放弃该油井)后 60 天内放弃该油井。井下和地面放弃的 OneStop 提交文件都必须在相同的 60 天期限内提交。3. 放弃是的,油井放弃将根据 AER 指令 020:油井放弃进行。我特此声明已启动 3 个选项中的 1 个。签名:日期:
脉冲电钻系统的一个重要组成部分是井下交流发电机。它使用涡轮机从抽水中产生电力,并且通常用于许多传统的钻井系统中。为250⁰C脉冲电气系统调整此组件有一些挑战。脉冲电钻需要相对较大的功率;在这种情况下,最多300千瓦。此外,在较低温度下井交流发电机中使用的材料在250⁰C时不稳定。该交流发电机的开发对于已持续的250项目的成功至关重要。此外,成功的高温交流发电机将对其他市场产生影响,从O&G到电动汽车(EV)再到太空勘探。表1中列出了已置换的250交流发电机的要求。
简介 传统上,高温电子产品的主要市场是井下石油和天然气工业。然而,航空电子、汽车和许多其他行业的应用也具有相同的关键要求:在恶劣的操作条件下(包括高湿度和多尘)的可靠性,以及承受冲击和振动的能力。 电阻器和电容器在任何电子设备和系统中都是无处不在的。缺乏可靠的高温、高值电容器几乎肯定会限制这些新应用的增长。目前市场上大多数电容器技术,例如铝电解电容器或薄膜电容器,最高温度范围限制在 125ºC - 150ºC 甚至更低。为了获得更高的温度额定值,使用陶瓷和钽电容器。 高温应用 井下 在井下电子设备中,高温通常被归类为 150ºC 及以上。过去,150ºC 至 175ºC 的温度是钻井作业的典型最高额定值。随着钻井深度和勘探条件恶劣地区的需要,这种情况显著增加。如今,油井的温度可能超过 200ºC,压力超过 25kpsi [1]。1. MWD——随钻测量(Sperry)——MWD 工具直接安装在钻头(钻头)后面。典型的深井温度为 210ºC 及以上,在非常深的天然气井中,潜在温度可能升高到 250ºC。除了承受极端高温外,此应用中使用的电子设备还必须能够应对 15G 的持续振动和 100 到 2000G 的极端冲击 [2]。2. 测井工具/有线测量——设备连接到电线并放入现有油井中进行数据收集。由高温电池供电的工具将信息存储在内部存储器中,而其他类型的设备则通过导电电缆提供在线测量。典型的最高工作温度为 225ºC,在不到 30 分钟的时间内便可达到从环境温度上升到该温度的温升。 3. 完井工具、生产监测 – 泵和阀门控制工具由永久安装的设备操作。一般而言,这些系统监测压力、流量、密度和温度。由于它们的设计使用寿命长,因此必须使用可靠性和性能最高的组件。此应用对冲击和振动的要求非常低,温度范围在 105ºC 至 175ºC 之间。 航空电子设备 工作温度可能因电子设备所处位置的不同而有很大差异。例如,靠近发动机本身的发动机控制系统的环境温度范围为 – 55ºC 至 200ºC。随着更多电动飞机的出现,电力电子设备将取代现有的液压系统。用于燃油泵、电机控制、电动制动和着陆系统将需要能够在较长的使用寿命内承受大量热循环的高温电容器。汽车 汽车电子是汽车行业中一个快速且持续增长的领域。高温设备正在取代机械或液压系统。温度条件可能有所不同,最苛刻的位置是发动机、变速箱和制动系统。发动机和变速箱的温度通常低于 200ºC,但一些安装在车轮上的部件可能达到 250ºC。
光纤传感在油气井中的应用。光纤传感有可能彻底改变石油和天然气行业的油井和油藏监测。光纤传感器的被动特性、经济高效的安装潜力以及沿光纤整个长度进行密集分布测量的可能性带来了诸多好处。使用安装在油气井中的光纤传感器获取的信息有助于提高效率、安全性和最终采收率。各种光纤传感器能够测量温度、压力、化学成分、应变和声学等物理效应。合适的数据基础设施和将这些测量结果转化为有价值信息的处理能力是任何传感系统的关键要素。基础由井中合适的光纤传感器和地面上的询问单元组成。本论文重点介绍基于两种光纤技术的传感硬件的开发:光纤布拉格光栅和瑞利散射。光纤布拉格光栅 (FBG) 是可以沿光纤电缆长度分布的点传感器。实现具有成本效益的基于 FBG 的传感系统的关键因素之一是低成本且坚固的询问装置。介绍了用于高温沙漠环境的此类询问装置的成功开发(第 3 章)。这项开发旨在促进商业低成本实现。这些可以结合专用测试装置在内部进行评估(第 4 章)。分布式声学传感 ( DAS ) 是一种完全分布式传感技术,利用标准光纤长度上自然发生的散射点的瑞利散射。反向散射能量可以被解释为在整个光纤中实现准麦克风。DAS 最近受到广泛关注,因为它在井下监测中具有潜在应用,例如压裂监测、流量监测以及地球物理监测。本论文以地球物理应用为重点,描述了合适的询问单元的开发(第 5 章)以及新原型在现场试验中的成功验证(第 6 章)。为了进一步扩大地球物理应用范围,需要增强光纤传感电缆对垂直于其轴向方向撞击的地震波的灵敏度(第 7 章)。本论文介绍了此类电缆概念的发展,并介绍了成功的实验室和现场试验结果(第 8 章)。分布式传感技术具有降低成本并提高空间分辨率的潜力。但是,沿电缆长度的连续测量会在从光纤中的光学长度到井下环境中的位置的转换中引入不确定性。虽然已经提出了几种深度校准方法,但本论文介绍了一种新方法的发展:磁深度定位器(第 9 章)。在井中安装多个磁铁组件可提供永久的深度参考点,这使其非常适合保障延时井和油藏监测所需的深度精度(第 10 章)。多种光纤传感技术可以组合在井下环境中。由此产生的沿光纤在时间和距离上连续的大量测量结果为石油和天然气行业的井和油藏监测提供了独特的机会。