问题 本文重点介绍油气井完井用电缆射孔技术的一个关键组件,即选择性控制枪系统电压的开关连接。当开关向射孔枪组件施加适当的电压时,爆炸会导致塞子或封隔器被设置,或射孔孔被喷射到套管、水泥和地层中。如今,选择性地将塞子和枪定位在井下的能力是垂直和水平应用中完井的关键要求,并已导致开发用于选择射孔的新型可寻址开关。新的开关取代了目前的压力开关,如果施加了杂散(不需要的)电压,压力开关可能会无意中引爆枪。井下发生这种情况的成本可能很高,因为需要大量资源来修复受损的井眼,或者导致生产损失或次优生产。如果意外爆炸发生在地面,结果可能会危及生命。为了防止此类事件发生并提供最高级别的安全性,新的开关是电寻址的,并且必须与地面系统和电缆操作员直接通信,然后它们才能将电流传递到射孔枪并允许爆炸。因此,它们在爆炸作业中使用起来本质上更安全,并且已被证明更可靠。在描述这种新的开关技术时,本文提出了一个行业快速采用它的案例。
季节性热能储能是通过将可再生能源整合到能源系统中,使低碳未来的有效度量。钻孔热量储能(BTE)为长期热能存储提供了解决方案,其运营优化对于充分利用其潜力至关重要。本文介绍了BTE的新型线性化控制模型,该模型描述了在不同的工作条件下的存储温度动力学,例如入口温度,质量流量和井眼连接布局(例如串行,并行或混合)。它支持一个优化框架,该框架被用来确定热泵驱动的BTE的最佳操作条件,但要遵守电力的不同𝐶𝑂2强度轮廓。证明,由于其季节性变化,这种边界条件对于系统的最佳操作至关重要,因为冬季的热泵效率提高而在夏季接受较低的热泵效率可能是有益的。符合两个不同的2个强度曲线的示例性区域病例的结果表明,夏季相比,夏季的相对强度较低,而冬季的相对强度较低,导致储存的最佳工作温度较高。所研究的地区系统是供暖为主的,有效地使BTE仅覆盖了总热量需求的20%,从而导致每年的二氧化碳排放量为2.2%至4.3%。在计算与BTE处理的加热和冷却需求相关的收益时,发现较高的𝐶𝑂2排放量在12.8%–19.9%的范围内减少。这突出了当受到更平衡的负载时的BTES潜力。
马来西亚近海二氧化碳封存的地质力学可行性分析 A. Haghi 1、S. Otto 1、R. Porjesz 1、J. Formento 1、J. Park 2、H. Gu 2、K. Bt Mohamad 3 1 CGG;2 SKEO;3 PETRONAS 摘要 对深层地质构造中潜在的二氧化碳封存地点进行地质力学筛选是一项巨大的挑战,特别是在沙捞越近海等构造活跃区。在本研究中,我们收集现有日志和井下应力和压力测量值,为该油田三个战略位置的井构建一维力学地球模型。我们绘制了剪应力水平 (SSL) 和压力室 (PR),以评估由于注气引起的断层重新激活或压裂导致二氧化碳通过盖层泄漏的风险。研究区域目前的应力状态以走滑状态为特征,与附近西巴兰线观测到的运动一致。利用世界应力图数据库,我们基于研究区域内11口海上钻井的142个井眼崩裂数据,确定了平均SH方向为N112°(±19°),这与东南东向巽他板块的绝对运动方向一致。根据本研究中改进的评分方法,我们发现SSL和PR值处于可接受至非常好的范围内。然而,摩擦平衡失效分析得出了PR的下限。本文概述的新型地质力学筛选方法提供了一种快速有效的方法,可以在进行详细表征之前识别适合CCS的储层。
利用先进的钻井和井眼刺激技术的地热系统有可能在 2050 年前为美国提供数十至数百千兆瓦的清洁电力。由于可变成本接近于零,地热发电厂传统上被设想为提供“基载”电力,始终以最大额定输出发电。然而,随着可变可再生能源 (VRE) 在能源市场上得到更广泛的部署,基载电力相对于灵活、可调度的发电和储能变得越来越没有竞争力。本文,我们分析了未来地热发电厂提供这两种服务的潜力,利用密闭、工程地热储层的自然特性,以累积的加压地流体形式储存能量,并提供灵活的负荷跟踪发电。我们开发了一个基于多物理储层模拟的线性优化模型,该模型可以捕捉密闭、工程地热储层内的瞬态压力和流动行为。然后,我们根据一组历史和建模的未来电价系列,优化利用此类水库的发电厂的投资决策和每小时运营。我们发现,运营灵活性和水库内储能可以显著提高地热发电厂在 VRE 渗透率较高的市场中的价值,与在相同条件下运行的传统基载电厂相比,能源价值可提高高达 60%。在一系列现实的地下和运营条件下,我们的建模表明,受限的工程地热水库可以提供大量且有效的
对网站的描述并提出了网站1。6.96公顷(HA)应用地点位于Eastgate的西南部,斯坦霍普(Stanhope)以西约4公里处。西部约300m是一个孤立的建筑物,被称为Westernhopeburn,位于Brotherlee Brother。2。应用地点包括位于河磨损北部和南部的土地。该地点的大部分位于河磨损的北部,在A689的南部,可以从中获得该站点的通道。该地点的这一部分位于河磨损上方,包括前Eastgate水泥厂的西部(也称为Weardale水泥工厂)(工程)并进入。2002年关闭的作品在2005年被拆除,尚未重新开发。3。在河的南部佩戴申请地点,包括两个现有的地下水抽象井,一个位于路德威尔农舍(Ludwell Farm House)的东部(称为井眼1(BH1)),并使用该井,另一个在西部(称为Borehole 2(BH2))。这两个地点都位于农业放牧场中,这些田地将向南倾斜向南驶向河磨损。BH1和BH2站点位于公路C74的北部,从中获得通道。这条路与河磨损南部的A689平行,并在东部的Stanhope和西部的Daddry Shield加入A689。申请站点还包括沿公路C74的BH1和BH2之间的地下管道。此外,使用以前将Eastgate采石场与以前的Weardale Cement Works现场联系起来的前传送带桥桥对穿过河的管道龙门,并将其连接到申请地点,并将将河水北部和南部的区域连接起来。
抽象的热量,流体和渗透性是设计用于发电的地热系统中的关键元素。但是,地下岩石本质上具有高温和低渗透率。为了克服这一点,将流体注入储层会增强热能和渗透性,从而通过非裂缝热岩石通过非裂纹的热岩石循环,并通过实施增强的地热系统(例如)来促进发电。本文介绍了针对EGS的各种案例研究的分析。对印度坎贝盆地的Kadi,Nawagam,Kathana和Tarapur Low的井眼温度的信息进行了一项研究,以评估这些地区的地热潜力。观察到的地热梯度范围为53°C/km至29°C/km,大部分井都超过35°C/km。地热梯度超过40°C/km的区域被确定为地热能产生的前瞻性,尤其是在塔拉普尔和瓦达塔尔田中。使用热干岩(HDR)提取方法,这些区域在地热资源方面具有巨大的潜力。初步的经济分析估计电力的水平成本(LCOE)范围为10.1美分/千瓦时至15.7美分/千瓦时。此估计包括与钻探两个井以及资本支出(CAPEX)和运营支出(OPEX)相关的费用。这项研究提供了对印度地热能的全面了解,并概述了古吉拉特邦坎贝盆地增强地热系统的潜力,并进行了成本效益分析。关键字:坎贝盆地,地热能,增强的地热系统,地热梯度,可再生能源
一般地质和地质研究(域A)[注:以下给出的示例仅是描述性的,不是包含全包的项目列表] A-1。地球系统和过程A-1.1地球历史A-1.2地球系统(例如地球,水圈,大气层,生物圈)A-1.3地质周期和过程(例如,岩石类型,板块构造)A-1.4的水平周期和过程(例如,蒸发,蒸发,降水量,质量源)(E. GEORNES ACERES和CYC,E.平衡)A-1.7碳循环A-2。地质信息的来源A-2.1政府机构(例如USGS,USDA,NRCS,州地质调查)A-2.2科学文献(例如,经过同行评审的出版物,地质实地考察出版物,地质实地考察出版物,研究生论文)A-3。地质和地球物理工具,技术和解释A-3.1地下调查(例如,钻孔,岩石芯,土壤采样)A-3.2岩石和土壤日志记录以及描述A-3.3表面和井眼地球物理学(例如,地震反射/反射/反射,电阻,gpr,gpr,gpr,televiever,televiewer)。字段注释,文档和记录保存A-5。全局定位,坐标系统和基准A-5.1坐标系统和基准(例如类型和应用程序)A-5.2全局定位系统(GPS)A-5.3测量精度和精度A-6。比例尺和比例分析A-6.1量表类型,应用和分析A-6.2水平和垂直尺度和关系(例如垂直夸张)A-7。遥感,图像分析和地理信息系统A-8.1航空影像和摄影测量A-8.2遥感(例如,红外,雷达图像,卫星图像以及光检测和范围(LIDAR))表面和地下映射和地图应用A-7.1地形图,斜率和配置文件A-7.2地质图,符号和应用A-7.3罢工和倾斜,显而易见,厚度和深度A-7.4 ISOPACH和ISOPACH和ISOCOCOCOCTACH和ISOCOCOCTECTRATION MAPE MAPS A-8。
orcaa:一个模拟欧罗巴冷冻ob派任务到阿克尼亚克州朱诺冰菲尔德。E. Lesage 1(Elodie.lesage@jpl.nasa.gov),S。M。Howell 1,S。Campbell2,3,J。Mikucki4,M。Smith1,D。Winebrenner5,T.A.Cwik 1,J。Burnett1,J。Burnett5,B。B。 品牌5,B。Hockman1,M。Pickett5,K。Tighe1,J。Clance4,R。Clavette2,S。Haq1,J。Holmes2,3,J。Shaffer4。 1缅因州2号加利福尼亚理工大学的喷气推进实验室,田纳西大学4朱诺冰菲尔德研究计划3号,诺克斯维尔大学4号,华盛顿大学5号大学应用物理实验室。 简介:对欧罗巴和其他海洋世界的未来探索可能涉及使用自主熔体探针(称为冷冻机器人)的直接原位访问和冰壳和地下液态水的特征[1,2,3]。 海洋世界侦察和天体类似物(ORCAA)项目的侦察和表征是一项多机构的努力,通过NASA的行星科学技术和通过模拟研究(PSTAR)计划资助。 ORCAA旨在通过行星地下探索技术来提高我们对地球上冰圈环境的理解,同时设想为未来的ICY地下访问任务提供科学操作。 我们的整体目标包括陆地冷冻射手通过两个野外活动来展示冰山下湖的通道。 我们计划采样和分析冰川井眼融化和冰川下水,以了解冰冷的宜居环境的演变及其居住的寿命。 1)。E. Lesage 1(Elodie.lesage@jpl.nasa.gov),S。M。Howell 1,S。Campbell2,3,J。Mikucki4,M。Smith1,D。Winebrenner5,T.A.Cwik 1,J。Burnett1,J。Burnett5,B。B。品牌5,B。Hockman1,M。Pickett5,K。Tighe1,J。Clance4,R。Clavette2,S。Haq1,J。Holmes2,3,J。Shaffer4。1缅因州2号加利福尼亚理工大学的喷气推进实验室,田纳西大学4朱诺冰菲尔德研究计划3号,诺克斯维尔大学4号,华盛顿大学5号大学应用物理实验室。简介:对欧罗巴和其他海洋世界的未来探索可能涉及使用自主熔体探针(称为冷冻机器人)的直接原位访问和冰壳和地下液态水的特征[1,2,3]。海洋世界侦察和天体类似物(ORCAA)项目的侦察和表征是一项多机构的努力,通过NASA的行星科学技术和通过模拟研究(PSTAR)计划资助。ORCAA旨在通过行星地下探索技术来提高我们对地球上冰圈环境的理解,同时设想为未来的ICY地下访问任务提供科学操作。我们的整体目标包括陆地冷冻射手通过两个野外活动来展示冰山下湖的通道。我们计划采样和分析冰川井眼融化和冰川下水,以了解冰冷的宜居环境的演变及其居住的寿命。1)。通过这项工作,我们还旨在阐明可以允许营养迁移的水文连通性的重要性,并在行星冰壳中建立宜居或居住的壁ni。统一这些科学和技术演示目标,我们将通过与一个远程行星科学团队在欧罗巴的地下访问科学任务中模拟命令周期来演示科学的操作概念(CONOPS)。虽然没有陆地冰川是欧罗巴的完美物理,化学或生物类似物,但朱诺冰菲尔德提供了多样化的冰川系统,可以在其中研究冰川微生物组,水文和概念操作,围绕熔体探针部署和样品处理(图
图4.30。Global conservation status overview of species recorded within project study area ........................................................................................................................................... 82 Figure 4.31.Location of species of local and global conservation value vis-à-vis habitat types ........................................................................................................................................... 82 Figure 4.32.保护受计划的井眼作品影响的重要植物群................................................................................................................................................... 98图4.33。Conservation significant flora affected by planned borehole, manhole and trench works ................................................................................................................................ 101 Figure 5.1.新加坡的集水区(公共事业委员会,2019年).................................................................................................................................................................................................................................................................................................在2011 - 2021年期间在荣获西风站的年度降雨量..... 111图5.3。自然流在项目研究区域的位置............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. 112图5.4。照片显示了项目研究区域内的各种流..................................... 113图5.5。流动特征调查点的位置.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................项目研究区域中地表水质采样点的位置........... 127图5.7。Surface water sampling activities .................................................................... 127 Figure 5.8.Project boundary, including original footprint (magenta) and revised footprint (cyan) ......................................................................................................................................... 137 Figure 6.1.基线噪声监测设备的设置................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. 150图6.2。项目研究区域内基线噪声监测站的位置......... 151图6.3。基线LEQ在一个星期内在N1站进行5分钟监测结果... 152图6.4。基线LEQ在一周内在N2站进行5分钟监测结果... 153图6.5。基线LEQ在一个星期内在N3站进行5分钟监测结果... 154图6.6。基线LEQ在一个星期内在N4站进行5分钟监测结果... 155图6.7。基线LEQ在一周内在N5站进行5分钟监测结果... 156图6.8。Predicted daytime noise level from Area 1 & 2 activities without mitigation measures .......................................................................................................................... 161 Figure 6.9.Predicted night-time noise level from Area 1 activities without mitigation measures ......................................................................................................................................... 162 Figure 6.10.Predicted daytime noise level from Area 3 activities without mitigation measures ......................................................................................................................................... 163 Figure 6.11.Predicted night-time noise level from Area 3 activities without mitigation measures ......................................................................................................................................... 163 Figure 6.12.通过缓解措施预测区域1和2的白天噪声水平……165图6.13。通过缓解措施预测区域1处的夜间噪声水平................................................................................................................................................................................................................................................... 165图6.14。Predicted day-time noise level at Area 3 with mitigation measures ................ 166 Figure 6.15.通过缓解措施预测区域3的夜间噪声水平............................................................................................................................................................................... 167图7.1。基线环境空气质量监测设备的设置........................................................................................................................................................................................................................................... 175图7.2。基线环境质量监测站的位置在项目区域内................................................................................................................................................................................................................................................................................. 175图8.1。基线接地振动监控设备的设置....................................................................................................................................................................................................................................................................................................................................................................... 189项目区域内的环境振动监控站的位置............................................................................................................................................. 189。在夜间调查期间观察到的CCKWW设施的人造光196图9.2。Artificial lighting observed along Dunbar Walk ................................................. 197 Figure 9.3.Example of light shielding ................................................................................ 199 Figure 9.4.Example of hedge planting using Murraya paniculata ..................................... 201 Figure 13.1.环境发生率报告流程图............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 237图13.2。Directional Clearance 1 ................................................................................. 243 Figure 13.3.Directional Clearance 2 ................................................................................. 244 Figure 13.4.Directional Clearance 3 ................................................................................. 245
对环境,安全和健康的要求或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。