* Lydia Saucedo, * Lindsay Mahler, * Jonathan Guajardo。HPV疫苗接种态度(2022-2023)Gregory Zaharas,Jessalyn Hawkins,James Lotter,Allison Barton, *Victoria Agbeibor。饮食中的吲哚代谢物对结直肠上皮细胞中紧密连接蛋白表达的影响(2021-2023) *ALEA BRUMMEL,fusobacteria衍生的外膜外膜囊泡对PDL-1对结直肠癌细胞中PDL-1表达的影响(20222-2023) *在结肠癌(2021-2023)中 *汉娜·希特森(Hannah Hittson), *莉亚·麦克莱尔(Leah McAleer), *Lindsay Mahler,Andie Zorba, *Gabriel Andino,探索影响HPV疫苗接种态度的因素(2020-2023)结直肠上皮细胞行为的代谢产物(2020-2023)本杰明·苏尔(Benjamin Suhl),麦迪逊·安布罗斯(Madison Ambrose), *莎拉·琼斯(Sarah Jones)。对有害藻类开花之前和之后从费耶特维尔湖分离的rRNA基因文库的系统发育分析(2020-2021) *克里斯蒂娜·哈根(Christina Hagan),min-suk kwak和 * ashely nguyen,对含硫含硫醇含硫化铜的影响对Zebrafish的发育和固定性。(2014-2016)
数学推理构成了深度学习模型的主要挑战,现在是一个非常活跃的研究领域[Williamson,2024]。诸如Isabelle [Paulson,1994],Coq [Barras等,1997]和Lean [De Moura等,2015,Moura和Ullrich,2021年]等形式语言是为了实现自动计算机验证证明的,现在可以作为基础来防止语言模型模型。最近提出了依赖LLM和正式证明搜索环境的几种方法(应用程序a),但受到正式培训数据的稀缺性(在Lean的中央定理库Mathlib [Mathlib Community,2020]中的大约100K引理数据)和机器学习方法效率低下的限制。因此,关于神经定理的大多数作品证明,都集中于从自动化或合成数据生成中获取更多数据[Xin等,2024a]。
非亚伯式拓扑顺序是易于断层量子计算的最有希望的平台之一[1]。这些阶段中的激发是非亚伯式的,它们是具有非亚伯交换统计的准粒子[2]。非亚伯里亚人提供了拓扑堕落的来源,可以非本地的信息存储。然后可以通过编织Anyons来操纵信息,这一过程由于其拓扑性质而反对局部扰动的反应[3-7]。在实现非亚洲拓扑秩序的最有希望的系统中,是强磁场中的2 d电子气体,它们可以形成分数量子霍尔(FQH)状态。令人兴奋的是,在FQH状态[8]中,有越来越多的实验证据,以及以填充分数为ν= 5 /2的非亚伯FQH状态,支持最简单的非亚伯利亚人,Ising,Anyon [9-13]。Ising Anyons对通用量子计算不足[1]。相比之下,拓扑命令支持所谓的斐波那契,可以用作通用量子计算机[14]。这是从fibonacci anyon的融合规则τ×τ= 1 +τ的角度来看,其中τ是fibonacci anyon,1是微不足道的anyon,×表示任何融合。因此,对观察到的ν= 12/5 fqh状态引起了极大的兴趣,因为数字表明这可能对z 3 read-rezayi(RR)状态[15] [15],该状态支持斐波那契任何人,除其他] Abelian [16,17]。[7]对于猜测ν= 5 /2状态。这些包括斐波那契的成核不幸的是,其他人的存在可以通过进入编织过程来弥补斐波那契人的操纵,因此在参考文献中讨论的在干涉实验中对非亚伯利亚人的识别感到沮丧。因此,了解是否有可能实现支持斐波那契的拓扑顺序,以作为其唯一的激发。已经提出了一些建议,以实现这种斐波那契状态。
Alexei Yu。 kitaev:拓扑量子代码(1996-2003)受到身体保护的量子计算(1997)与非亚伯人Anyons进行计算(1997)CSS-CSS-to-Holdomologicy Dictionary(1998)魔术状态蒸馏(1999-2004)量子电线中的Majorana Modes(2000)Alexei Yu。kitaev:拓扑量子代码(1996-2003)受到身体保护的量子计算(1997)与非亚伯人Anyons进行计算(1997)CSS-CSS-to-Holdomologicy Dictionary(1998)魔术状态蒸馏(1999-2004)量子电线中的Majorana Modes(2000)
1澳大利亚澳大利亚糖尿病行为研究中心,澳大利亚卡尔顿2卫生服务研究科,哥本哈根大学公共卫生研究所,哥本哈根大学,哥本哈根,丹麦3号丹麦3号心理学学院,迪肯大学,迪肯大学,澳大利亚伯伍德,澳大利亚伯伍德4儿科内部学和糖尿病学系 Universitätsmedizin Berlin, Berlin, Germany 6 Berlin Institute of Health, Berlin, Germany 7 Dedoc Labs GmbH, Berlin, Germany 8 School of Sociology & School of Medicine, University College Dublin, Dublin, Ireland 9 Diabetes Management Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark 10 #OpenAPS, Seattle, WA, United States 11 Diabetes Ireland,爱尔兰都柏林12号公共卫生学院,大学科克大学科克,爱尔兰科克
粒子组件的量子力学描述仅限于两个(或一个)空间尺寸的粒子的组件,提供了许多与玻色子和费米子不同的可能性。我们称之为这样的粒子。最简单的Anyons通过角相参数θ进行了参数化。θ= 0,π分别对应于玻色子和费米子。在Intermedi-Ate值中,我们说我们具有分数统计数据。在二维中,θ将波函数获取的相描述为两个逆时针旋转的彼此缠绕。它为相对角动量产生允许值的变化。与Abelian U(1)量规组相关的局部电荷和磁通量的复合材料实现了这种行为。更复杂的电荷升华结构可能涉及在允许的电荷和通量范围内的非亚伯和产品组,从而产生非亚伯和相互统计。nonabelian Anyons的互换在内部状态的新兴空间内实现了波函数的单一转换。各种各样的人都用包括Chern -Simons项在内的量子场理论来描述。环上的一维Anyons的交叉点是单向的,因此互换时获得的分数相θ产生了Anyons之间相对动量的分数移动。最近,在ν= 1/3中的准粒子预测的Anyon行为< / div>
引言基因是影响各种生命形式的基本存在的继承的基本单位[1]。改变了导致突变的个体基因组会引起10,000多种不同类型的遗传疾病,从而影响了全球8000万人的生活[2]。 尽管如此,分子科学和技术的惊人进步已极大地改变了我们的脱氧纤维核酸(DNA)的命运,通过突破性的技术应用,可以完全翻新个体的遗传构成,并减少由于遗传疾病和cosp虫疾病和consposecencenease疾病和长粘量亚伯症而导致的发病率和死亡率的负担。 基因编辑是一种有希望的基因组工程技术,它加速了疾病建模,基因治疗,药物发育和分子治疗策略的新发现中的量子飞跃[4]。改变了导致突变的个体基因组会引起10,000多种不同类型的遗传疾病,从而影响了全球8000万人的生活[2]。尽管如此,分子科学和技术的惊人进步已极大地改变了我们的脱氧纤维核酸(DNA)的命运,通过突破性的技术应用,可以完全翻新个体的遗传构成,并减少由于遗传疾病和cosp虫疾病和consposecencenease疾病和长粘量亚伯症而导致的发病率和死亡率的负担。基因编辑是一种有希望的基因组工程技术,它加速了疾病建模,基因治疗,药物发育和分子治疗策略的新发现中的量子飞跃[4]。
在中药硕士学位的论文中提交了波尔图大学亚伯·萨拉萨尔(Abel Salazar)生物医学科学研究所。 Advisor- Prof. Doctor António Araújo Category- Director of the Medical Oncology Service Affiliation- Hospital Center of Porto Coorientador- Master Nuno Correia Category- Specialist of Internal Medicine Affiliation- Hospital Center of S. João do Porto Coorientadora- Mestre Irene Pais Category- Doctor of Biomedical Sciences- Institute of Biomedical Sciences of Abel Salazar在中药硕士学位的论文中提交了波尔图大学亚伯·萨拉萨尔(Abel Salazar)生物医学科学研究所。Advisor- Prof. Doctor António Araújo Category- Director of the Medical Oncology Service Affiliation- Hospital Center of Porto Coorientador- Master Nuno Correia Category- Specialist of Internal Medicine Affiliation- Hospital Center of S. João do Porto Coorientadora- Mestre Irene Pais Category- Doctor of Biomedical Sciences- Institute of Biomedical Sciences of Abel SalazarAdvisor- Prof. Doctor António Araújo Category- Director of the Medical Oncology Service Affiliation- Hospital Center of Porto Coorientador- Master Nuno Correia Category- Specialist of Internal Medicine Affiliation- Hospital Center of S. João do Porto Coorientadora- Mestre Irene Pais Category- Doctor of Biomedical Sciences- Institute of Biomedical Sciences of Abel Salazar
1 迪肯大学运动与营养科学学院、体育活动与营养研究所,澳大利亚伯伍德 2 昆士兰大学医学院、皇家布里斯班妇女医院,澳大利亚布里斯班 3 昆士兰大学医学院,澳大利亚布里斯班 4 迪肯大学健康学院护理与助产学院,澳大利亚吉朗 5 莫纳什健康学院质量与患者安全研究中心 – 莫纳什健康伙伴关系,莫纳什健康,澳大利亚墨尔本 6 拉筹伯大学贝克心血管研究、翻译与实施系,澳大利亚墨尔本 7 贝克心脏与糖尿病研究所,澳大利亚墨尔本 8 迪肯大学应用人工智能研究所,澳大利亚伯伍德 9 墨尔本大学计算机与信息系统学院,澳大利亚墨尔本 10 代尔夫特理工大学工业设计工程学院,荷兰代尔夫特 11 格里菲斯大学医学与牙科学院应用健康经济学中心,澳大利亚黄金海岸 12 李光前医学院,南洋理工大学,新加坡,新加坡 13 墨尔本大学全科医学和初级保健系,墨尔本,澳大利亚 14 墨尔本大学医学、牙科和健康科学学院墨尔本人口与全球健康学院,墨尔本,澳大利亚 15 哥本哈根大学计算机科学系,哥本哈根,丹麦 16 弗林德斯大学弗林德斯数字健康研究中心,阿德莱德,澳大利亚
在量子染色体动力学(QCD)中,假定夸克和反夸克之间的颜色非亚伯式场是由于此类局势的不同组分之间的强非线性相互作用而在管中构建的。该管的性质使得在管之外,所有田间,因此能量密度,随着距离而呈指数降低。在这样的管中,有一个纵向的电场连接夸克,并彼此吸引。这是夸克提案的解释。在经典的SU(3)非亚伯利亚Yang-Mills理论中,与其他领域没有耦合,这种解决方案显然不存在。反过来,QCD中的晶格计算表明,确实存在这种非阿贝尔族的配置。当涉及其他领域时,已经存在此类解决方案。例如,当电磁场与Higgs标量线相互作用时,存在具有磁场的通风的试管,即Nielsen和Olesen [1]发现的众所周知的解决方案。非亚伯液管溶液,其力线沿着管轴扭曲,其力线被扭曲。另一个有趣的事实是,这些管子可以存在于Proca理论中。例如,在[3]中,表明存在带有非线性术语的复杂矢量字段支持的引力和非循环Q管,在某种意义上可以模仿非亚伯利亚Yang-Mills理论中的自我相互作用。在[4,5]中,已经证明了与Higgs标量线相连的SU(3)中的管子的存在。在这些论文中,发现了两种类型的管溶液。在第一种类型的试管中,沿着位于±∞的彩色电荷(夸克)产生的管子沿着管子产生的纵向颜色电场有一个纵向颜色的电场。在第二种类型的试管中,沿着管子有一个动力。这种动量的存在显然等于沿着管转移的能量频道的存在。