序列 MERPPGLRPG AGGPWEMRER LGTGGFGNVC LYQHRELDLK IAIKSCRLEL STKNRERWCH EIQIMKKLNH ANVVKACDVP EELNILIHDV PLLAMEYCSG GDLRKLLNKP ENCCGLKESQ ILSLLSDIGS GIRYLHENKI IHRDLKPENI VLQDVGGKII HKIIDLGYAK DVDQGSLCTS FVGTLQYLAP ELFENKPYTA TVDYWSFGTM VFECIAGYRP FLHHLQPFTW HEKIKKKDPK CIFACEEMSG EVRFSSHLPQ PNSLCSLVVE PMENWLQLML NWDPQQRGGP VDLTLKQPRC FVLMDHILNL KIVHILNMTS AKIISFLLPP DESLHSLQSR IERETGINTG SQELLSETGI SLDPRKPASQ CVLDGVRGCD SYMVYLFDKS KTVYEGPFAS RSLSDCVNYI VQDSKIQLPI IQLRKVWAEA VHYVSGLKED YSRLFQGQRA AMLSLLRYNA NLTKMKNTLI SASQQLKAKL EFFHKSIQLD LERYSEQMTY GISSEKMLKA WKEMEEKAIH YAEVGVIGYL EDQIMSLHAE IMELQKSPYG RRQGDLMESL EQRAIDLYKQ LKHRPSDHSY SDSTEMVKII VHTVQSQDRV LKELFGHLSK LLGCKQKIID LLPKVEVALS NIKEADNTVM FMQGKRQKEI WHLLKIACTQ SSARSLVGSS LEGAVTPQTS AWLPPTSAEH DHSLSCVVTP QDGETSAQMI EENLNCLGHL STIIHEANEE QGNSMMNLDW SWLTE
同源重组因子在 DNA 复制过程中对保护新生 DNA 起着至关重要的作用,但染色质在此过程中的作用尚不清楚。在这里,我们使用了已知可在酿酒酵母中诱导位点特异性复制叉停滞的细菌 Tus/Ter 屏障。我们报告称,Set1C 亚基 Spp1 被募集到停滞的复制叉后面,与其与 Set1 的相互作用无关。Spp1 染色质募集依赖于其 PHD 结构域与沉积在停滞叉后面的 H3K4me3 亲本组蛋白的相互作用。它的募集通过限制 Exo1 的访问来防止 ssDNA 在停滞叉处积累。我们进一步表明,删除 SPP 1 会增加屏障上游的突变率,有利于微缺失的积累。最后,我们报告称 Spp1 保护 Tus/Ter 停滞复制叉处的新生 DNA。我们认为 Spp1 限制了叉的重塑,最终限制了新生 DNA 对核酸酶的利用。
序列 MERPPGLRPG AGGPWEMRER LGTGGFGNVC LYQHRELDLK IAIKSCRLEL STKNRERWCH EIQIMKKLNH ANVVKACDVP EELNILIHDV PLLAMEYCSG GDLRKLLNKP ENCCGLKESQ ILSLLSDIGS GIRYLHENKI IHRDLKPENI VLQDVGGKII HKIIDLGYAK DVDQGSLCTS FVGTLQYLAP ELFENKPYTA TVDYWSFGTM VFECIAGYRP FLHHLQPFTW HEKIKKKDPK CIFACEEMSG EVRFSSHLPQ PNSLCSLVVE PMENWLQLML NWDPQQRGGP VDLTLKQPRC FVLMDHILNL KIVHILNMTS AKIISFLLPP DESLHSLQSR IERETGINTG SQELLSETGI SLDPRKPASQ CVLDGVRGCD SYMVYLFDKS KTVYEGPFAS RSLSDCVNYI VQDSKIQLPI IQLRKVWAEA VHYVSGLKED YSRLFQGQRA AMLSLLRYNA NLTKMKNTLI SASQQLKAKL EFFHKSIQLD LERYSEQMTY GISSEKMLKA WKEMEEKAIH YAEVGVIGYL EDQIMSLHAE IMELQKSPYG RRQGDLMESL EQRAIDLYKQ LKHRPSDHSY SDSTEMVKII VHTVQSQDRV LKELFGHLSK LLGCKQKIID LLPKVEVALS NIKEADNTVM FMQGKRQKEI WHLLKIACTQ SSARSLVGSS LEGAVTPQTS AWLPPTSAEH DHSLSCVVTP QDGETSAQMI EENLNCLGHL STIIHEANEE QGNSMMNLDW SWLTE
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请使用去离子无菌水复原蛋白质至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 甘油(最终浓度)并分装以在 -20°C/-80°C 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请使用去离子无菌水复原蛋白质至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 甘油(最终浓度)并分装以在 -20°C/-80°C 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月13日。 https://doi.org/10.1101/2024.07.18.604114 doi:biorxiv Preprint
低收入国家和中等收入国家的官方贫困衡量已长期依赖家庭调查,家庭调查是必不可少但耗时的生计测量工具。鉴于可靠的调查测量所需的技术能力以及在全国或全国代表性的生计调查中遇到的实质性后勤困难,因此在世界上的许多地方,这种调查通常很少经常完成,因此在许多地区对贫困和相关的态度进行了预期和及时的衡量,许多地区都在许多地区进行贫困和相关的态度。同时,调查数据通常基于样本,该样本旨在在较大的空间尺度上具有代表性,因此通常不足以在村庄或邻里水平上产生可靠的估计值 - 反贫困干预措施通常需要针对的。因此,对于可以补充和扩展现有家庭调查的工作的本地生计测量值,需要更具成本效益和可扩展的替代方案。
叶绿体ATP合酶包含质体和核遗传来源的亚基。为了研究这种复合物的协调生物发生,我们通过筛选绿色藻类衣原体中的新型ATP合酶突变体,通过筛选高光灵敏度。我们在这里报告了影响两个外围茎亚基B和B 0的突变体的表征,该突变体由ATPF和ATPG基因编码,以及三个鉴定核因子MDE1的独立突变体,这些突变体稳定叶绿体编码的ATPE mRNA所需的核因子MDE1。全基因组测序显示在ATPG的3 0 UTR中插入了转座子插入,而质谱显示在此敲低ATPG突变体中,功能性ATP合酶的一小部分积累。相反,通过CRISPR-CAS9基因编辑获得的敲除ATPG突变体,完全防止ATP合酶功能和积累,这也是在ATPF框架转移突变体中观察到的。与主要类囊体蛋白酶的FTSH1-1突变体穿越ATP合酶突变体将ATPH鉴定为FTSH底物,并表明FTSH显着促进了ATP合酶亚基的一致积累。在MDE1突变体中,不存在ATPE转录物完全阻止ATP合酶的生物发生和光合作用。使用嵌合ATPE基因营救ATPE转录本的积累,我们证明了一种新型的八度肽重复(OPR)蛋白MDE1遗传靶向ATPE 5 0 UTR。从主要内部生物生物症(〜1.5 Gy)的角度来看,将MDE1募集到其ATPE靶标招募了一个核/叶绿体相互作用的典范,这些相互作用是在最近进化的,在叶绿体的祖先中,我的cs cs cs exestor higlophyceae的祖先,〜300。
结果:总共包括168位HIV阳性孕妇,其中32.1%(54/168)显示出UTI症状。就怀孕的年龄而言,三个月为34.5%(58/168),在Trime II中为47.6%(80/168),最后是三个月的17.9%(30/168)。约有61.3%(103/168)的参与者是城市居民。从29例(53.7%)临床确认的UTI患者和9.7%(11)非临床确认的患者中分离出细菌。最常见的细菌是大肠杆菌,其占25%(10/40),其中84.4%在革兰氏阴性基组中对四环素具有抗性,而50%(4/8)金黄色葡萄球菌具有抗性,而75%的分离株对革兰氏蛋白易感组敏感。总体而言,22.5%(9/40)细菌分离株对至少一种抗微生物剂具有抗性,而62.5%(25/40)的分离株对≥2种抗微生物剂具有抗性。
某些病毒(如带尾噬菌体和单纯疱疹病毒)通过强大的环状分子马达将双链 DNA 包装到空的衣壳中。噬菌体 Φ 29 的 DNA 包装马达的高分辨率结构和力测量表明,其五个 ATPase 亚基相互协调 ATP 水解,以维持环上 DNA 易位步骤的正确循环序列。在这里,我们探索 Φ 29 马达如何通过跨亚基相互作用定时关键事件(即 ATP 结合/水解和 DNA 抓取)来调节易位。我们使用与 DNA 结合的亚基二聚体作为我们的模型系统,这是一个最小系统,仍然可以捕捉完整五线运动复合体的构象和跨亚基相互作用。全 ATP 和混合 ATP-ADP 二聚体的分子动力学模拟表明,一个亚基的核苷酸占有率通过改变其催化谷氨酸接近 ATP 的伽马磷酸盐的自由能景观,强烈影响其水解相邻亚基中 ATP 的能力。具体而言,一个 ATP 结合亚基会提供反式残基,从而在空间上阻断相邻亚基的催化谷氨酸。当第一个亚基水解 ATP 并与 ADP 结合时,这种空间障碍就会得到解决。这种阻碍机制得到了功能性诱变的支持,并且似乎在几个 Φ 29 亲属中是保守的。对我们的模拟进行相互信息分析,揭示了通过反式阻断残基的亚基间信号通路,这些通路允许相邻亚基的结合口袋之间进行感知和通信。这项工作表明,通过新的反式亚基相互作用和通路,亚基之间的 DNA 易位事件的顺序得以保留。