该学院在政府的 Springboard 计划中获得了 12 门在线课程的 241 个名额,该计划是其就业战略的一部分。该计划旨在帮助最近失业的人重新学习和提高技能,以帮助他们重返工作岗位。Springboard 中包含的学院课程包括:制药科学学士(荣誉学位);建筑管理学士;环境管理学士;自动化与仪器仪表证书/电子证书;精益西格玛质量证书;电子工程学士;机电一体化学士;电子工程学士(荣誉学位);
引言:蛋白质营养不良症,通常称为 Kwashiorkor,是非洲一种常见疾病,尤其常见于儿童。(患有恶性营养不良症的人会逐渐变得虚弱和消瘦;他的长发先变红,然后变白;他的胃部会严重膨胀,并且无法有效控制四肢。)西方观察家认为,非洲许多地区的这种营养不良主要是由于恶劣的物质环境和不适当的食品生产和/或分配方法造成的。也就是说,普通非洲人无法获得足够的蛋白质。在这种情况下,人们认为西方技术可以帮助消除蛋白质营养不良。例如,西方药物和杀虫剂可以成功对抗动物昏睡病和其他牲畜疾病,从而使非洲人在目前禁止此类畜牧业的地区能够饲养牛、羊和山羊。此外,西方技术可以通过增加水源或牧场为畜牧业开辟新领域,通过精心饲养提高家畜的质量和生产力。可以向非洲人介绍新的蛋白质食品,并增加他们目前生产的此类食品。最后,可以改善交通运输,以便将所需的食品销往有需要的地区。如果没有其他办法,可以将奶粉等蛋白质来源作为医疗和福利计划的一部分分发给有需要的非洲人。上述对抗蛋白质营养不良的方法在非洲大部分地区已经实施了相当长的时间,而且肯定会继续使用。由于非洲的文化模式,无论是公开的(可观察的行为)还是隐蔽的(态度、价值观),这些方法往往无法实现他们所期望的一切,或者造成了其他问题。首先,非洲人由于他们传统的食物制备和消费模式,经常没有充分利用可用的蛋白质。他们仍然喜欢传统的蛋白质含量低但能带来更多满足感的食物,比如玉米、木薯或山药。另一方面,新地区畜牧业的开放往往
然而,当巴士艰难地穿过城市迷宫时,一场缓慢而神奇的变化正在发生。司机开始向所有乘客大声自言自语,慷慨地评论着我们眼前经过的场景:那家百货商店在打折,那家博物馆在举办美丽的展览,以及下一个街区的电影院刚刚上映的电影怎么样。他从与我们谈论这座城市提供的众多选择中得到的明显满足感具有感染力,每当乘客结束旅程下车时,他们似乎都摆脱了上车时和司机用“待会儿见!”向他们道别时的烦躁光环。祝你今天过得愉快! ,大家都报以灿烂的笑容。
1990 年,安大略省哈格斯维尔的 1400 万个旧轮胎被烧毁。一位关注这一情况的私营企业家与 Goldenberg 合作,制造了一台机器人机器,可以确定轮胎是否支持翻新。为了检查轮胎,旧轮胎被安装起来,以便小型机械臂可以在轮胎内部旋转以绘制内部结构。在同一十年中,Goldenberg 开始与加拿大原子能有限公司 (AECL) 进行为期五年的合作,其中包括开发多个机器人来支持核能运营。第一个是制造用于维护核反应堆管道的机械臂。管道需要定期进行内部清洁,但由于高辐射水平,对人类构成重大风险。Goldenberg 为 AECL 创建的另一个工作原型是长距离机械手,用于在放射性排放高于人类安全允许值的区域运行。它包括一个超声波扫描仪,用于绕着反应堆的支腿移动并定期扫描危险缺陷。第三次合作包括自动处理员工生物样本,以便可以在无需人工干预的情况下对生物材料进行准备和放射性扫描。
标题单击磷脂合成的化学,以研究与EPR和Cryo-Em方法研究脂质 - 蛋白质的相互作用,支持者Gabriele Giachin Research Group研究小组生物分类结构联系网络:电子邮件:Gabriele.giachin.giachin@unipd.it@unipd.it copropont.it Marco Bortolus Research Group epr SpectReprspross Eprsprspross epr Spect eprsproseps epr spect epr spect eprsprops epr spect eprsproppopy eprsproppopy Web网络https://wwwdisc.chimica.unipd.it/eprlab/?page_id=111电子邮件:marco.bortolus@unipd.it Internationalsectment PI. Sebastian Glatt Institute Malopolska生物技术中心生物技术中心,Jagiellonian University,Jagiellonian University,Countrant Countrant,Countrand of Countrand of Countrand,Poland sectuds#3)生物分子的神秘类别。虽然脂质众所周知是膜结构和储能的基本单位,但它们也可以充当执行变构功能和信号传导的化学使者,并且是蛋白质稳定性和折叠的结构元素。解密不同脂质物种的确切作用和生物学相互作用已被证明难以捉摸。脂质很难研究的原因之一是相对缺乏既缺乏质疑动态并在结构层面上可视化它们的技术。在过去的几十年中,随着化学和合成生物学和新型化学技术的强大工具的研究,基于脂质的探针已变得越来越普遍,用于研究体外和体内脂质。脂质组学的应用包括,例如,了解脂质生物合成,贩运和信号的基本细胞生物学,但也发展了癌症药物递送系统。在细胞中,膜中的精确而复杂的磷脂组成对于线粒体功能至关重要。线粒体是细胞的“动力”,磷脂可能会影响包括呼吸链超复合物在内的蛋白质复合物的活性,生物发生和稳定性。尤其是,几种磷脂分子与复合物I(NADH:泛氨基氧化还原酶)交织在一起,这是呼吸链的入口点,是我们细胞的最大膜相关酶(1 MDA)。复合物I的功能障碍与儿童相关的遗传疾病和成人神经退行性综合症有关。脂质可以调节复合物活性,而不是其在维持线粒体膜完整性中的作用。需要进一步研究脂质如何调节CI组装或功能。脂质复合I相互作用及其功能含义的机制仍不清楚:通过合成不同的生物模拟脂质,我们计划在多技术方法中剖析不同脂质与复杂I的相互作用。在这种情况下,PHD项目“单击化学以合成磷脂的合成来研究脂质 - 蛋白与EPR和Cryo-EM方法的相互作用”将着重于研究分子识别机制,从而调节分子识别机制,从而调节伴侣磷脂与天然复合物之间的相互作用。