26 十二月 24 一般前线覆盖 01 26 十二月 24 26 十二月 24 前线覆盖 - 频率更正 01 回收 01 更新记录 02 26 十二月 24 检查清单 01-03 CL 26 十二月 24 26 十二月 24 图例 01 24 十二月 22 图例 02 10 八月 23 图例 03 05 十一月 20 缩写 01 AB 16 七月 20 缩写 02 AB 09 九月 21 缩写 03 AB 07 十二月 17 国际民航组织语音字母表 01 31 十月 24 警告 01 27 四月 17 机场运行最低标准 01 24 三月 22 降级设备 01 27 四月 17 ILS 接地区坐标 01 01 12 月 22 日 SIV 1 01 26 12 月 24 日 26 12 月 24 日 SIV 2 02 26 12 月 24 日 26 12 月 24 日 RWY 真航向 01 01 12 月 22 日 分钟至十进制转换 01 机场
摘要:锂硫电池(LSB)是最有希望的下一代电池技术之一。第一个原型细胞比常规锂离子电池(LIB)显示出更高的特异能量,并且活性材料具有成本效益且普遍丰富。然而,Li-S电池仍然遭受了几个局限性,主要是周期寿命,细胞的频率以及缺乏组件生产价值链。由于该电池系统基于复杂的转换机制,因此电解质起着关键作用,不仅是针对特定能量的,而且还起着速率能力,循环稳定性和成本。在此,我们报告了基于乙二醇 - 乙酰溶剂的电解质,四甲氧基糖(TEG)和四甲氧基糖糖(TMG)。这些溶剂之前已经检查了超级电容器和Libs,但从未对LSB进行研究,尽管它们表现出了一些有益的特性,并且由于它们是几种化学物质的前体,因此已经建立了生产价值链。通过在TXG:DOL溶剂混合物中调节溶剂比和LITFSI浓度来建立一个专门适应的电解质组成。所获得的电解质显示出长的循环寿命以及较高的库仑效率,而无需使用Lino 3,这是一种正常导致细胞通信和安全问题的组件。此外,还进行了多层Li-S袋细胞中的成功评估。电解质得到了彻底的表征,并讨论了其硫转化机制。
本文介绍了锂硫 (Li-S) 储能电池的应用,同时展示了几种缓解其电化学挑战的技术的优缺点。无人机、电动汽车和电网规模储能系统是 Li-S 电池的主要应用,因为它们成本低、比容量高、重量轻。然而,多硫化物穿梭效应、低电导率和低库仑效率是 Li-S 电池面临的关键挑战,导致体积变化大、树枝状生长和循环性能受限。固态电解质、界面夹层和电催化剂是缓解这些挑战的有前途的方法。此外,纳米材料能够改善 Li-S 电池的动力学反应,这是基于纳米粒子的几种特性,将硫固定在阴极中,稳定阳极中的锂,同时控制体积增长。考虑到基于可再生能源的环保系统,Li-S 储能技术能够满足未来市场对高功率密度、低成本的先进充电电池的需求。
并非 80 年代的锂金属 首次尝试制造带有锂金属阳极的电池是在 20 世纪 80 年代。这些尝试未能抑制锂枝晶或电阻副产物的形成,这些副产物要么导致危险的操作条件,要么缩短循环寿命。因此,该技术从金属锂发展到锂离子 (Li-ion) 电池。Sion Power 通过开发一种多方面的方法来保护锂金属阳极,成功克服了困扰历史锂金属化学的问题。
10:20 argyrodite固体电解质作为离子导体和活性材料前体在锂 /硫磺固体固体电池中的双重作用KonradMünch,Justus-liebig-universitätgiessen< / div>
抽象目的:与植入物相关的感染代表了导致发病率和死亡率增加的重要并发症。确定引起感染的微生物剂对于成功治疗至关重要。尽管周围关节感染(PJIS)随着时间的推移而发生的发生率,但尚无100%灵敏度的诊断测试来准确识别这些感染。本研究的目的是确定将超声处理与Dithiothreitol(DTT)相结合是否提高了诊断植入物相关感染的准确性和敏感性。方法:具体来说,本研究包括30名因怀疑感染而因植入物去除的患者。植入物分为两个段:使用超声处理方法处理一个段,另一种是通过组合DTT和超声处理来处理的。结果:对于合并组而言,平均值为81.17 +/- 67.53 cfu/ml,对于组合组,平均值为109.7 +/- 62.78 cfu/ml。结论:我们的研究结果表明,DTT和超声处理的组合增加了菌落数量约为28.53 CFU/ML,这增强了检测到骨科植入物相关感染的可能性。
缩写:5-FU,5-氟尿嘧啶;AA-CoA,花生四烯酸辅酶 A;ABCC1,ATP 结合盒,C 亚家族(CFTR/MRP),成员 1;ACC,无定形碳酸钙;ACLS4,酰基辅酶 A 合成酶家族 4;AdA-CoA,肾上腺酸辅酶 A;ALDH,醛脱氢酶;AML,急性髓细胞白血病;APC,抗原处理细胞;ARE,抗氧化反应元件;ART,青蒿素;BAX,BCL-2 相关 X 蛋白;BCL-2,B 细胞淋巴瘤 2;BTIC,脑肿瘤起始细胞;CBR,临床受益率;CLL,慢性淋巴细胞白血病;CNSI-Fe(II),碳纳米颗粒负载铁;CQ,氯喹;CRPC,去势抵抗性前列腺癌; CSC,癌症干细胞;CTL,细胞毒性 T 淋巴细胞;CuET,二乙基二硫代氨基甲酸铜 (II);DAMP,损伤相关分子模式;DFO,去铁胺;DHA,双氢青蒿素;DLAT,丙酮酸二氢硫酰赖氨酸残基乙酰转移酶成分;DMT1,二价金属转运蛋白 1;DOX,阿霉素;DRD2,多巴胺 D2 受体;DSF,双硫仑;EGFR,表皮生长因子受体;EMT,上皮-间质转化;ER,内质网;ETO,依托泊苷;FDX1,铁氧还蛋白 1;FER-1,铁抑制蛋白 1;FMN,基于框架的纳米剂;FPN1,铁转运蛋白 1;FTH1,铁蛋白重链 1; FTL1,铁蛋白轻链 1;GPX4,谷胱甘肽过氧化物酶 4;GSH,谷胱甘肽;GSS,谷胱甘肽合成酶;H 2 O 2,过氧化氢;HNC,头颈癌;HO-1,血红素加氧酶-1;ICD,免疫细胞死亡;ICIs,免疫检查点抑制剂;IDH1,异柠檬酸脱氢酶 1;IFN-γ,干扰素-γ;IREB2,铁反应元件结合蛋白 2;IREs,铁反应元件;IRP-2,铁调节蛋白 2;IRPs,铁调节蛋白;JAK,Janus 酪氨酸激酶;KEAP1,kelch 样 ECH 相关蛋白 1;KRAS,Kirsten 大鼠肉瘤病毒致癌基因同源物;LA,硫辛酸; LC3II,微管相关蛋白 1 轻链 3α;LDH,乳酸脱氢酶;LiMOFs,锂基金属有机骨架;LIPRO-1,利普司他丁 1;LOX,脂氧合酶;LPCAT3,溶血磷脂酰胆碱酰基转移酶 3;MDA,丙二醛;MFC-Gem,载吉西他滨的碳质纳米粒子;MGMT,甲基鸟嘌呤甲基转移酶;MMNPs,磁性介孔二氧化硅纳米粒子;MMP-2,金属蛋白酶-2;MnFe 2 O 4 ,锰铁氧体;mRNAs,信使 RNA;NEPC,神经内分泌前列腺癌;NF- κ B,活化 B 细胞的核因子 κ 轻链增强子;NFS1,半胱氨酸脱硫酶;NK,自然杀伤细胞; NOX,NADPH 氧化酶 1;NRF2,核因子红细胞 2 相关因子 2;NSCLC,非小细胞肺癌;OC1,耳蜗毛细胞;OS,总生存率;P62,隔离小体 1;PET,正电子发射断层扫描;P-GP,P-糖蛋白;PCC,持久癌细胞;PCN(Fe) MOFs,Fe 3 + 卟啉金属有机骨架上的 PEG;PD-L1,程序性死亡配体 1;PDAC,胰腺导管腺癌;PEG,聚乙二醇;PGE2,前列腺素 E2;PGRMC1,孕酮受体膜成分 1;PHPM,ROS 敏感聚合物;PTX,紫杉醇;PUFA,多不饱和脂肪酸;PUFA-OOH,磷脂多不饱和脂肪酸过氧化物;RIPK-1/2/3,受体相互作用丝氨酸/苏氨酸蛋白激酶 1/2/3;ROS,活性氧;RR,反应率;siRNA,小干扰 RNA;siSLC7A11,SLC7A11 siRNA;SLC3A2,溶质载体家族 3 成员 2;SLC40A1,溶质载体家族 40 成员 1;SLC7A11,溶质载体家族 7 成员 11;STAT1,信号转导和转录激活因子 1;TAM,肿瘤相关巨噬细胞;TCA,三羧酸循环;TFR,转铁蛋白受体;TME,肿瘤微环境; TMZ,替莫唑胺;TP53,细胞肿瘤抗原 p53;TRADD,肿瘤坏死因子受体 1 型相关死亡结构域蛋白;TTP,进展时间;US FDA,美国食品药品管理局;UTRs,非翻译区;VDAC,电压依赖性阴离子通道;xCT,谷氨酸-胱氨酸反向转运蛋白;Z-VAD-FMK,羧苄氧缬氨酰丙氨酰天冬氨酰-[O-甲基]-氟甲基酮;γ-GCS,γ-谷氨酰半胱氨酸合成酶。 * 通讯作者。电子邮箱地址:mateusz.kciuk@biol.uni.lodz.pl (M. Kciuk)。
结核病是一个在全球范围内的问题,由于抗药性不断发展,对经济造成了负担。需要开发新的抗结核药物,并且可以通过抑制可毒靶标实现。结核分枝杆菌烯酰酰基载体蛋白(ACP)还原酶(INHA)是结核分枝杆菌存活的重要酶。在这项研究中,我们报告了可以通过抑制该酶来治疗结核病的伊萨蛋白衍生物的合成。化合物4L显示IC 50值(0.6±0.94 µm)类似于异念珠菌,但对MDR和XDR结核分枝杆菌菌株(MIC分别为0.48和3.9 µg/ mL)也有效。分子对接研究表明,这种化合物通过在活性部位使用相对未开发的疏水口袋结合。分子动力学用于研究和支持4L复合物与靶酶的稳定性。这项研究为新型抗结核药物的设计和合成铺平了道路。
2.7.3. GTO 双机发射的发射窗口 2.7.4. GTO 单机发射的发射窗口 2.7.5. 非 GTO 发射的发射窗口 2.7.6. 发射推迟 2.7.7. 升空前关闭发动机 2.8. 上升阶段的航天器定位 2.9. 分离条件 2.9.1. 定位性能 2.9.2. 分离模式和指向精度 2.9.2.1. 三轴稳定模式 2.9.2.2. 自旋稳定模式 2.9.3. 分离线速度和碰撞风险规避 2.9.4. 多重分离能力 第 3 章 环境条件 3.1. 一般要求 3.2. 机械环境 3.2.1. 静态加速度 3.2.1.1. 地面 3.2.1.2. 飞行中 3.2.2.稳态角运动 3.2.3. 正弦等效动力学 3.2.4. 随机振动 3.2.5. 声振动 3.2.5.1. 地面 3.2.5.2. 飞行中 3.2.6. 冲击 3.2.7. 整流罩下的静压 3.2.7.1. 地面 3.2.7.2. 飞行中 3.3. 热环境 3.3.1. 简介 3.3.2. 地面操作 3.3.2.1. CSG 设施环境 3.3.2.2. 整流罩或 SYLDA 5 下的热条件 3.3.3. 飞行环境 3.3.3.1. 整流罩抛弃前的热条件 3.3.3.2. 气动热通量和整流罩抛弃后的热条件 3.3.3.3. 其他通量 3.4. 清洁度和污染 3.4.1.环境中的洁净度 3.4.2. 沉积污染 3.4.2.1. 颗粒污染 3.4.2.2. 有机污染 3.5. 电磁环境 3.5.1. L/V 和范围 RF 系统 3.5.2. 电磁场 3.6. 环境验证
摘要:在阴极上多硫化物的穿梭和阳极锂树突的不可控制的生长限制了锂 - 硫(Li -s)电池的实际应用。在这项研究中,设计和合成的镍 - 二二烯)和富含N的三嗪中心(即NIS 4-TAPT)的镍 - 双(二硫烯)和富含N的三氮中心(即NIS 4-TAPT)的金属配位3D共价有机框架(COF)。NIS 4中的丰富的NI中心和N位点可以大大增强多硫化物的吸附和转化。同时,Ni -bis(二硫烯)中心的存在使Li阳极均匀的Li成核使Li成核抑制了Li dendrites的生长。这项工作证明了整合催化和吸附位点的有效性,以优化宿主材料与氧化还原活性中间体之间的化学相互作用,从而有可能促进金属协调的COF材料的合理设计用于高性能二级电池。■简介