定向能量沉积 (DED) 是一种很有前途的增材制造修复技术;然而,DED 易在薄壁部分产生表面波纹(驼峰),这会增加残余应力和裂纹敏感性,并降低疲劳性能。目前,由于缺乏具有高时空分辨率的操作监测方法,DED 中的裂纹形成机制尚不十分清楚。在这里,我们使用在线相干成像 (ICI) 来光学监测表面拓扑并原位检测开裂,结合同步加速器 X 射线成像来观察表面下裂纹的愈合和扩展。ICI 首次实现离轴对准(相对于激光器 24 ◦),从而能够集成到 DED 机器中,而无需更改激光传输光学系统。我们使用单元件 MEMS 扫描仪和定制校准板,实现了 ICI 测量值和激光束位置之间的横向(< 10 µ m)和深度(< 3 µ m)精确配准。 ICI 表面拓扑结构通过相应的射线照片(相关性 > 0.93)进行验证,直接跟踪表面粗糙度和波纹度。我们故意在镍基高温合金 CM247LC 的薄壁结构中植入隆起,在表面凹陷处局部诱发开裂。使用 ICI 现场观察到小至 7 µ m 的裂纹开口,包括亚表面信号。通过量化隆起和开裂,我们证明 ICI 是一种可行的现场裂纹检测工具。
未转化的反应物。在此步骤中,氢气可从混合物中分离出来,并在反应中重新使用。在未来以氢气为主要能源载体的情况下,分离和/或纯化能量昂贵的氢气将变得更加重要。[1–3] 一种有前途的方法是使用由吸氢金属(如钯和钯合金)制成的氢选择性膜。[4,5] 此类膜的渗透性取决于两侧的表面性质(解离/复合)和本体渗透性(扩散和溶解度)。[4] 人们已经进行了大量研究,以寻找比钯具有更高渗透性的廉价材料(例如钒、铌、钽及其合金[6–10]),然而,昂贵的钯和钯基合金由于其良好的表面性质仍然是优越的膜材料。 [5,11] 如果可以修改诸如钒基合金等廉价材料的表面性质以匹配钯的性质,它们将彻底改变该技术。尽管这个目标相当简单,但是对于这些理想的表面性质仍然存在知识缺口。大多数著作引用了表面科学的概念,描述了氢的物理吸附、解离(屏障)和化学吸附。[12] 但是,需要额外的步骤 - 跳跃到亚表面位点和相邻的本体位点 - 才能充分模拟渗透过程。尽管如此,由于步骤之间的复杂相互作用,建模的预测能力有限 [4,6,13],更重要的是 - 由于缺乏原位氢分析,只能通过与非常基础的实验(渗透动力学,例如参考文献 [14])进行比较才能进行实验验证。Baldi 等人已经证明了电子能量损失谱可以作为纳米颗粒中本体氢的分析方法。 [15] 在本文中,我们进一步开发了通过反射电子能量损失谱 (REELS) 原位探测氢化物薄膜表面氢含量的方法。该方法应用于实验方法,其中可以有意改变膜的表面性质并在操作条件下确定其氢含量。我们通过直接观察 Pd/V 复合膜中渗透对氢含量的依赖性证明了限速步骤的存在。建模得出了各个层的相关性,从而可以将结果与从氢吸收中获得的结果联系起来
认为短切纤维增强 2.2 层压板确实是随机的,这种说法过于乐观,甚至可能具有误导性。目视观察 5 mil 短切纤维 2.2 层压板,其外观不均匀,有深色和浅色区域(图 A)。为了确定短切纤维增强材料的均匀性,使用了 X 射线荧光。玻璃纤维的化学成分主要是氧化硅 (SiO 2 ),其次是 CaO 2 、Al 2 O3、MgO 和 B 2 O 3 。XRF 对重元素的敏感度高于碳或氟。因此,使用 XRF 追踪明暗区域中重 Si 和 Ca 的相对成分。第一个观察结果是,暗区和明区具有不同的密度(未显示表面分析)。散射强度与轻元素和重元素的浓度成正比。需要进行更详细的分析,以获得有关两个区域之间密度差异的定量信息。众所周知,PTFE 的 Dk 取决于高温致密化过程中从 PTFE 复合材料中压缩出来的空气量。图 B 显示了浅色和深色区域的 XRF 散射强度重叠(亚表面体分析)。深色区域的硅含量是深色区域的 2.35 倍,钙含量是深色区域的 1.34 倍。氧化硅(二氧化硅)的 Dk 为 3.28,明显高于 PTFE 的 2.1 Dk。硅和钙的不均匀分布表明制造过程容易产生非均匀的介电材料。目前尚不清楚哪种材料更均匀 - 短切纤维或连续编织增强的 2.2 Dk PTFE 复合材料。但必须指出的是,短切纤维层压板上的浅色和深色区域的域尺寸非常大,肉眼可见,并且肯定与编织玻璃纤维 PTFE 层压板(TLY-5)相当。真正随机短切纤维增强层压板的 x、y 和 z CTE 值相等。具有不同 Si 和 Ca 浓度的浅色和深色区域的大区域尺寸表明,层压板内可能存在具有波动 CTE 值的不同区域。
采用先进激光剪切干涉技术进行航空航天无损检测 John W. NEWMAN Laser Technology Inc. 1055 W. Germantown Pike, Norristown, PA 19403 电话:610-631-5043,传真:610-631-0934 电子邮件:jnewman@laserndt.com 网址:www.laserndt.com 摘要:自 1986 年首次用于美国生产飞机项目以来,剪切干涉无损检测已经取得了长足的发展。剪切干涉激光干涉成像方法测量由于施加的应力工程变化而导致的测试结构变形。由此产生的 Z 轴应变分量变化揭示了航空航天结构中脱粘、分层、核心缺陷和冲击损伤等亚表面缺陷的图像。剪切干涉无损检测提供高吞吐量、经济高效的生产力增强、改进的制造工艺和质量。数字 CCD 相机、PC 和小型高功率固态激光器的发展已显著提高了剪切干涉仪和系统的性能。剪切干涉仪目前广泛用于各种飞机,包括 F-22、F-35 JSF、空中客车、赛斯纳 Citation X、雷神 Premier I 和 NASA 航天飞机。本演讲将简要介绍剪切干涉无损检测技术的背景以及生产和便携式机载剪切干涉检测技术和应用的最新发展。关键词:航空航天无损检测、剪切干涉无损检测、蜂窝结构、无损检测、脱粘、损坏、分层 1.0 背景 在当今竞争激烈的航空航天环境中,一种高效的高速检测技术至关重要。剪切干涉无损检测为在制造和现场对新飞机进行无损检测提供了一种更好、更快的方法。为了最大限度地提高燃油经济性和性能,工程师们已经从铆接和粘合的铝结构转向实心复合层压板、带有蜂窝或泡沫芯的复合夹层板以及胶带缠绕的复合结构(如机身)。传统的无损检测方法,例如超声波 (UT) C 扫描,可能无法为这些新材料和几何形状提供最佳的缺陷检测能力,并且速度很慢,典型的吞吐量仅为 10 平方英尺/小时。此外,制造复杂复合结构的过程需要一种快速检查的方法来提供过程控制反馈,并以尽可能低的成本确保质量和可靠性。在当今的许多航空航天项目中,激光剪切干涉技术提供了很大一部分解决方案。
飞秒激光分层表面重构用于下一代神经接口电极和微电极阵列 Shahram Amini * 1,2、Wesley Seche 1、Nicholas May 2、Hongbin Choi 2、Pouya Tavousi 3、Sina Shahbazmohamadi 2 1 Pulse Technologies Inc.,研究与开发,宾夕法尼亚州 Quakertown 18951 2 康涅狄格大学生物医学工程系,康涅狄格州斯托尔斯 06269 3 康涅狄格大学 UConn 科技园,康涅狄格州斯托尔斯 06269 * 通信地址为 SA(电子邮件:samini@pulsetechnologies.com)摘要 长期植入式神经接口设备能够通过神经刺激以及感知和记录往返于神经组织的电信号来诊断、监测和治疗许多心脏、神经、视网膜和听力疾病。为了提高这些设备的特异性、功能性和性能,电极和微电极阵列(大多数新兴设备的基础)必须进一步小型化,并且必须具有出色的电化学性能和与神经组织的电荷交换特性。在本报告中,我们首次表明可以调整飞秒激光分级重构电极的电化学性能,以产生前所未有的性能值,这些性能值大大超过文献中报道的性能值,例如,与未重构电极相比,电荷存储容量和比电容分别提高了两个数量级和 700 倍以上。此外,建立了激光参数、电化学性能和电极表面参数之间的相关性,虽然性能指标随着激光参数呈现出相对一致的增加行为,但表面参数往往遵循不太可预测的趋势,否定了这些表面参数与性能之间的直接关系。为了回答是什么推动了这种性能和可调性,以及广泛采用的增加表面积和电极粗糙化的原因是否是观察到的性能提升的关键因素,使用聚焦离子束对电极进行的横截面分析首次表明,存在可能有助于观察到的电化学性能增强的亚表面特征。本报告首次报道用于神经接口应用的飞秒激光分层重构电极的此类性能增强和可调性。简介人口老龄化和大量心脏 1,2 、神经 3-6 、视网膜 7,8 和听力障碍 9,10 的存在,这些疾病无法仅通过药物治愈,导致需要长期植入设备的患者数量显著增加。表 1 总结了这些设备及其广泛的应用范围。植入式设备通过将外部电信号从神经刺激器或植入式脉冲发生器 (IPG) 传输到植入式电极或微电极阵列,然后穿过神经细胞或组织 11 的膜,对活组织进行人工刺激。神经系统负责传输从大脑到肌肉以引起肌肉运动的电信号,反之亦然,从感觉器官到大脑(例如,感觉、听觉和视觉)。如果神经受伤,大脑与周围神经之间的交流中断,例如脊髓损伤 12-15 ,则有可能