KRAS 突变导致四分之一的癌症死亡,而且大多数无法用药治疗。几种 MAPK 通路抑制剂已获 FDA 批准,但在充分抑制肿瘤细胞中的 RAS/RAF/MAPK 信号所需的剂量下耐受性较差。我们发现致癌 KRAS 信号在突变 KRAS 介导的转化早期和整个过程中诱导了亚铁 (Fe 2+ ) 积累。我们将 FDA 批准的 MEK 抑制剂转化为亚铁可激活药物偶联物 (FeADC),并在肿瘤细胞中实现了有效的 MAPK 阻断,同时保留了正常组织。这一创新使得对肿瘤动物进行可持续、有效的治疗成为可能,通过肿瘤选择性药物激活,产生卓越的全身耐受性。亚铁积累是 KRAS 转化的一个可利用特征,而 FeADC 有望改善 KRAS 驱动的实体瘤的治疗。
1 卡尔斯鲁厄理工学院 (KIT) 物理研究所,德国卡尔斯鲁厄 2 卡尔斯鲁厄量子材料与技术研究所,德国卡尔斯鲁厄 3 韩国首尔基础科学研究所 (IBS) 量子纳米科学中心。 4 梨花女子大学,韩国首尔。 * 通讯作者:philip.willke@kit.edu,
制造工艺:用于亚铁和非亚铁金属材料的铸造技术(重力,高压和低压模具铸造等。),转化为固体和半固态状态(冲压,锻造),热处理,过程发展,降低缺陷等。
尽管几十年来人们已经知道癌症对铁有着无尽的渴望,但直到最近才出现了一种化学方法,利用这种改变的状态进行治疗,即针对癌细胞中扩大的细胞浆不稳定铁池 (LIP)。最先进的治疗方法包括与 LIP 反应产生细胞毒性自由基物质(在某些情况下还会释放药物有效载荷)和加剧 LIP 诱导的氧化应激以引发铁死亡的分子。在患者中有效地实施 LIP 靶向疗法需要生物标记来识别那些 LIP 升高最高、因此最有可能死于 LIP 靶向干预的肿瘤。为了实现这一目标,我们测试了肿瘤对新型 LIP 感应放射性示踪剂 18 F-TRX 的摄取是否与肿瘤对 LIP 靶向疗法的敏感性一致。方法:在 10 个皮下和原位人类异种移植模型中体内评估了 18 F-TRX 的摄取。优先考虑神经胶质瘤和肾细胞癌,因为这些肿瘤在 Broad Institute 癌细胞系百科全书中具有最高的 STEAP3(一种将三价铁还原为亚铁氧化状态的氧化还原酶)相对表达水平。在携带 U251 或 PC3 异种移植瘤的小鼠中比较了 LIP 激活的前药 TRX-CBI(可释放 DNA 烷化剂 CBI)的抗肿瘤作用,这两种肿瘤分别具有高和中等水平的 18 F-TRX 摄取。结果:18 F-TRX 显示出广泛的肿瘤蓄积范围。抗肿瘤评估研究表明,TRX-CBI 强烈抑制了 U251 异种移植瘤(具有最高 18 F-TRX 摄取量的模型)的生长。此外,抗 U251 肿瘤作用显著高于 PC3 肿瘤作用,这与治疗前肿瘤中 18 F-TRX 确定的 LIP 相对水平一致。最后,剂量测定研究表明,成年雄性和雌性小鼠的估计有效人体剂量与其他 18 F 基成像探针相当。结论:据我们所知,我们报告了第一个证据,即可以使用分子成像工具预测肿瘤对 LIP 靶向治疗的敏感性。更一般地说,这些数据为核治疗诊断模型带来了新的维度,表明需要成像来原位量化亚稳态生物分析物的浓度以预测肿瘤药物敏感性。
借助光,人们可以找到耗散最小的机制来影响磁化。[1] 在这方面,亚铁磁材料迄今为止对超快激光激发表现出最显著的响应,首先是用单个 40 飞秒激光脉冲观察到金属亚铁磁合金 GdFeCo 中的磁化转换。[2] 已证明该机制是通过激光诱导加热后的强非平衡瞬态铁磁相 [3] 进行的。[4] 后来,通过光诱导磁各向异性变化,在介电亚铁磁体中实现了磁位的非热光学记录机制。[5] 最近,人们发现这种亚铁磁性电介质还能实现一种新颖的热辅助磁记录 (HAMR) 机制,[6,7] 它不需要像 GdFeCo 那样几乎完全退磁,而是依赖于磁各向异性的温度依赖性。 [8] 这就提出了一个问题:磁各向异性的超快变化是否也会在金属亚铁磁体中发挥作用。然而,尽管人们对金属亚铁磁体的研究兴趣浓厚,但尚未讨论磁各向异性超快动力学导致的磁化动力学和最终的磁切换。在这里,为了研究磁各向异性的温度依赖性在金属亚铁磁体的激光诱导磁化动力学中的作用,我们考虑了亚铁磁 Gd/FeCo 多层。在过去的几年中,人们研究了激光诱导的稀土过渡金属 (RE-TM) 多层异质结构现象,并将其与合金进行了比较,主要关注全光切换。 [9–13] 在这方面,多层膜与合金相比最大的区别在于,由于 RE-TM 接触面积减小,且被限制在界面上,因此稀土和过渡金属自旋之间的有效反铁磁交换相互作用较弱。一个较少暴露的方面是结构各向异性对磁各向异性的影响,这种影响是由各向同性合金的层状排列引起的。也就是说,当界面处的对称性被破坏时,结构可以获得对磁各向异性的额外和可控贡献。[14,15] 通过对磁场和泵浦通量进行泵浦探测磁光测量,我们发现我们的多层膜中的激光诱导动力学与已知的
25 请参阅补充信息以了解 (I) 对退火后的 Pt/Co/Gd 堆栈进行的 SQUID M(T) 测量分析;(II III) 对在不同 Ta 下退火的样品进行多达 10 个后续激光脉冲的测量;(III) 对具有不同 Ta 的 Pt/Co/Gd 堆栈进行的脉冲能量相关的 AOS 测量;(IV) 按正常比例绘制的 DW 速度与 Hz 的关系;以及 (V) 在退火后的 Pt/Co/Gd 堆栈上进行的 HDMI 测量。
KRAS 突变导致四分之一的癌症死亡,而且大多数无法用药治疗。几种 MAPK 通路抑制剂已获 FDA 批准,但在充分抑制肿瘤细胞中的 RAS/RAF/MAPK 信号所需的剂量下耐受性较差。我们发现致癌 KRAS 信号在突变 KRAS 介导的转化早期和整个过程中诱导了亚铁 (Fe 2+ ) 积累。我们将 FDA 批准的 MEK 抑制剂转化为亚铁可激活药物偶联物 (FeADC),并在肿瘤细胞中实现了有效的 MAPK 阻断,同时保留了正常组织。这一创新使得对肿瘤动物进行可持续、有效的治疗成为可能,通过肿瘤选择性药物激活,产生卓越的全身耐受性。亚铁积累是 KRAS 转化的一个可利用特征,而 FeADC 有望改善 KRAS 驱动的实体瘤的治疗。
TSR Automotive GmbH是TSR回收GmbH&Co。KG的全资子公司,该公司是Remondis Group及其全球业务运营的一部分。TSR回收是回收亚铁和非有产金属以及旧的电气和电子设备的主要公司之一,并处理金属回收领域中发生的所有任务;它雇用大约欧洲170个商业网站的4,000人。除了进行购买,销售和翻新单元外,TSR还提供与为行业,商业和地方当局回收废金属有关的所有服务。它回收约。每年有850万吨的亚铁和有色金属生产高质量的回收原材料,然后可以在生产中重新使用。这意味着TSR是循环经济链中的重要联系,从长远来看有助于节省资源并保护环境。
摘要:具有强垂直磁各向异性 (PMA) 的磁绝缘体在探索纯自旋流现象和开发超低耗散自旋电子器件中起着关键作用,因此它们在开发新材料平台方面非常有吸引力。在这里,我们报告了具有不同晶体取向的 La 2/3 Sr 1/3 MnO 3 (LSMO)-SrIrO 3 (SIO) 复合氧化物薄膜 (LSMIO) 的外延生长,该薄膜通过脉冲激光沉积的连续双靶烧蚀工艺制成。LSMIO 薄膜表现出高晶体质量,在原子级上具有 LSMO 和 SIO 的均匀混合物。观察到亚铁磁和绝缘传输特性,温度相关的电阻率与 Mott 可变范围跳跃模型很好地拟合。此外,LSMIO 薄膜表现出强的 PMA。通过进一步构建亚铁磁绝缘体LSMIO和强自旋轨道耦合SIO层的全钙钛矿氧化物异质结构,观察到显著的自旋霍尔磁阻(SMR)和自旋霍尔类异常霍尔效应(SH-AHE)。这些结果表明亚铁磁绝缘体LSMIO在开发全氧化物超低耗散自旋电子器件方面具有潜在的应用价值。关键词:钙钛矿氧化物,磁性绝缘体,垂直磁各向异性,自旋霍尔磁阻,自旋电子学■引言
控制与铁吸收、释放和储存有关的蛋白质表达的系统。众所周知,IRP(铁调节蛋白)通过 IREBP(铁反应元件结合蛋白)与位于其 UTR(5' 非翻译重复序列)中的铁蛋白 mRNA IRE(铁反应元件)结合发挥其生理作用,其中一种可能的结果是激活 NFR2(核因子 [红细胞衍生 2] 样 2)。 NFR2 是一种转录因子,其靶标包括:(1) 参与 β 和 γ 珠蛋白基因转录的基因;(2) 编码两种基因的转录因子的基因,这两种基因又编码两种参与血红蛋白血红素生成的蛋白质:(a) ABCB6 (ATP 结合盒亚家族 B 成员 6)(将卟啉从细胞质运送到线粒体)和 (b) 亚铁螯合酶(将亚铁插入原卟啉 IX)[4,5]。