“人类食品系统是环境中生物多样性丧失的巨大驱动力。同时,我们的食品系统中的生物多样性维持了人类所依赖的营养。”“我希望这些信息可以帮助提供指导并确定解决方案,以便我们的粮食系统变得更加可持续,从而使人类健康和生态系统受益。”
[1] Azizova TV等。(2020)INT J Epidemiol 49,435–447。[2] Cucinotta FA,Kim Mhy&Chappell LJ(2013)。太空辐射癌风险预测和不确定性 - 2012年(NASA报告号TP-2013-217375)[3] Srivastava T.等。辐射。res。199,490–505(2023)。[4] Boice J.等。IJRB 98,795-821(2022)。 [5] Dauer L.等。 Z. Med。 物理。 34,100-110(2023)[6]国家卫生统计中心(NCHS)疾病控制与预防中心https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm [7]监测,epemiology and Endemoology(Seemiology)(seer)(secancer)(secand)IJRB 98,795-821(2022)。[5] Dauer L.等。Z. Med。 物理。 34,100-110(2023)[6]国家卫生统计中心(NCHS)疾病控制与预防中心https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm [7]监测,epemiology and Endemoology(Seemiology)(seer)(secancer)(secand)Z. Med。物理。34,100-110(2023)[6]国家卫生统计中心(NCHS)疾病控制与预防中心https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm [7]监测,epemiology and Endemoology(Seemiology)(seer)(secancer)(secand)34,100-110(2023)[6]国家卫生统计中心(NCHS)疾病控制与预防中心https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm [7]监测,epemiology and Endemoology(Seemiology)(seer)(secancer)(secand)
在传统的人机操作中,各种代理人的作用和责任的功能分解被分配为先验。例如,在当前的空中交通运营中,尽管在软件的协助下,人类飞行员对飞机的最终控制。多构成的人机和机器机系统将面临变化和潜在不可预测的复杂性的问题,即将在未来的行星,途中和轨道活动的挑战性情况下。因此,重要的是要将决策动态转移给适当的团队成员,即人类或机器,具体取决于哪种代理商最能在时间预算中解决该特定问题。在本文中,我们考虑了解决问题的方面及其建模的各个方面,这些方面影响了决策的结果,这是解决方案质量的函数以及在所需的时间预算中解决问题的可能性。我们专注于大型语言模型(LLM)作为潜在的机器队友,并得出结论,在开发的当前阶段,实用的,预测的性能是不可行的。简单的示例帮助我们说明当前的LLM将需要基本进步,以在团队决策中提供可靠的支持,尤其是在安全至关重要和关键时期领域。这项研究并不是要降低LLM的显着功能的价值,而是要更好地了解技术的适当使用和所需的添加。
NATURE IN SINGAPORE 17 : e2024115 Date of Publication: 29 November 2024 DOI: 10.26107/NIS-2024-0115 © National University of Singapore Biodiversity Record: A giant Amazon river turtle, Podocnemis expansa , at Punggol Tan Jian Qing Email: tanjianqing.personal@gmail.com Recommended citation.tan JQ(2024)生物多样性记录:位于Punggol的巨型亚马逊河龟,Podocnemis especta。新加坡的自然,17:e2024115。doi:10.26107/nis-2024-0115主题:巨型亚马逊河龟,podocnemis膨胀(Reptilia:testudines:pleurodira:pleurodira:podocnemididae)。主题:Kelvin K. P. Lim。位置,日期和时间:新加坡岛,Punggol; 2024年9月7日;大约1715小时。栖息地:Urban Parkland的淡水池塘。观察者:谭简。观察:观察到约40厘米甲壳长度的一个例子约15分钟在池塘边缘游泳(图。1–3)并跟随观察者的运动。尽管它是在许多红线滑块(Trachemys Scripta Elegrans)的公司中,但它几乎与他们相互作用(图。2)。
技术产品能力:开发RFC储能系统技术,该技术可以为月面和近表面任务提供持续可靠的电力,在这些传输中,光伏/电池或核选项可能是不可行的;对于月球表面应用,将RFC从TRL3提高到至少TRL5。
•数据库组成的96 x 97均等水平网格和90个垂直级别•数据库存储一个金星日数据以说明昼夜行为•考虑多个太阳能和云反照率方案
资料来源:哥伦比亚基础制图和内部行政边界:Agustin Codazzi 地理研究所 - IGAC 和国家行政统计局国家地理统计框架 (DANE, 2021)。巴西基础制图和内部行政边界:巴西地理和统计研究所 - IBGE 和 Geoportal Provita,2023。秘鲁基础制图和内部行政边界:Open Street Map 和国家地理研究所,2021 年和秘鲁国家独特数字平台,2023 年。玻利维亚基础制图和内部行政边界:地理服务器:Servidor Geográfico - GeoBolivia 和联合国人道主义事务协调办公室 (OCHA),2023 年。亚马逊盆地边界:亚马逊地理参考社会环境信息网络 (RAISG, 2020)。森林覆盖率损失:全球森林观察 (GFW),2021 年。
本研究的目的是通过遵守和执行国际法规为 Shell-Pastaza 机场制定安全计划。通过观察表、调查和在机场设施采访该航空运输系统的主要参与者来收集信息。满意度调查针对机场用户。在分析了主要信息后,可以指出机场在以下方面存在不足:危险区域的识别、战略区域的故障、在存在危险的情况下缺乏运营安全程序。运营安全计划的制定和发展是在机场的技术和行政方面进行的,必须以协调一致的方式运作。运营安全计划将使机场在可能出现的每种情况下都有协议、程序、仪表板和责任。
本研究的目的是通过遵守和执行国际法规,为 Shell-Pastaza 机场制定安全计划。信息是通过观察表、调查和与机场设施对该航空运输系统主要参与者的访谈收集的。满意度调查针对机场用户。在分析主要信息后,可以指出机场在以下方面存在缺陷:危险区域识别、战略区域失灵、在存在危险的情况下缺乏运营安全程序。运营安全计划的制定和发展是在机场的技术和行政方面进行的,必须以协调一致的方式运作。运营安全计划将使机场在可能出现的每种情况下都有协议、程序、仪表板和责任。
摘要:本文旨在反思亚马逊地区水力发电对巴西互联系统的战略重要性。其量化表明,与目前的盐下油产量相比,该地区具有更高的发电潜力。我们从可再生能源的地缘政治角度来考虑这个问题,它带来了新的相关要素。在本文中,分析框架侧重于路径依赖、智能电网和能源密集型社会及其能源安全政策。结果,我们观察到,在目前的配置下,可再生能源的出现可以成为亚马逊长期经济专业化的额外元素,从社会环境角度来看,其后果令人担忧。