摘要:背景:表征唐氏综合征(DS)的认知障碍已归因于胎儿阶段的神经发生障碍引起的脑部低细胞性。Thus, enhancing prenatal neurogenesis in DS could prevent or reduce some of the neuromorphological and cognitive defects found in post-natal stages.Objectives: Because fatty acids play a fundamental role in morphogenesis and brain development during fetal stages, in this study, we aimed to enhance neurogenesis and the cognitive abilities of the Ts65Dn (TS) mouse model of DS by administering方法:从胚胎日(ED)10(ed)10到产后(PD)2用油酸(400 mg/kg),亚麻酸(500 mg/kg)或车辆,从胚胎日(ED)10(ED)10(ed)10(pd)2对八十五个怀孕的TS女性进行皮下处理。所有分析均在其TS和对照(CO)男性和女性后代进行。在PD2时,我们评估了40 TS和CO PUP中治疗对神经发生,细胞性和脑体重的短期影响。六十九个TS和CO小鼠用于测试产前处理对PD30至PD45认知的长期影响,以及PD45的神经发生,细胞和突触标记。通过方差分析比较 的产前给药或亚麻酸的产前给药增加了脑体重( +36.7%和 +45%,p <0.01),brdu-(溴脱氧尿苷的密度( +64%和 +22%,p <0.05)的PD2 TS小鼠相对于媒介物处理的TS小鼠。的产前给药或亚麻酸的产前给药增加了脑体重( +36.7%和 +45%,p <0.01),brdu-(溴脱氧尿苷的密度( +64%和 +22%,p <0.05)的PD2 TS小鼠相对于媒介物处理的TS小鼠。的产前给药或亚麻酸的产前给药增加了脑体重( +36.7%和 +45%,p <0.01),brdu-(溴脱氧尿苷的密度( +64%和 +22%,p <0.05)的PD2 TS小鼠相对于媒介物处理的TS小鼠。的产前给药或亚麻酸的产前给药增加了脑体重( +36.7%和 +45%,p <0.01),brdu-(溴脱氧尿苷的密度( +64%和 +22%,p <0.05)的PD2 TS小鼠相对于媒介物处理的TS小鼠。的产前给药或亚麻酸的产前给药增加了脑体重( +36.7%和 +45%,p <0.01),brdu-(溴脱氧尿苷的密度( +64%和 +22%,p <0.05)的PD2 TS小鼠相对于媒介物处理的TS小鼠。的产前给药或亚麻酸的产前给药增加了脑体重( +36.7%和 +45%,p <0.01),brdu-(溴脱氧尿苷的密度( +64%和 +22%,p <0.05)的PD2 TS小鼠相对于媒介物处理的TS小鼠。的产前给药或亚麻酸的产前给药增加了脑体重( +36.7%和 +45%,p <0.01),brdu-(溴脱氧尿苷的密度( +64%和 +22%,p <0.05)的PD2 TS小鼠相对于媒介物处理的TS小鼠。的产前给药或亚麻酸的产前给药增加了脑体重( +36.7%和 +45%,p <0.01),brdu-(溴脱氧尿苷的密度( +64%和 +22%,p <0.05)的PD2 TS小鼠相对于媒介物处理的TS小鼠。的产前给药或亚麻酸的产前给药增加了脑体重( +36.7%和 +45%,p <0.01),brdu-(溴脱氧尿苷的密度( +64%和 +22%,p <0.05)的PD2 TS小鼠相对于媒介物处理的TS小鼠。在PD30和PD45之间,用油酸或亚麻酸在产前治疗的TS小鼠表现出更好的认知能力( +28%和 +25%和 +25%,P <0.01)和更高的突触后标记PSD955
Abbreviations: Alzheimer's Disease (AD), amnestic Mild Cognitive Impairment (aMCI), Healthy Controls (HCs), Healthy Volunteers (HVs), fatty acids (FAs), polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), saturated fatty acids (SFAs), High- Affinity Binders (HABs), Mixed-Affinity Binders (MABs), Low-Affinity Binders (LABs), central nervous system (CNS), 18-kDa Translocator Protein (TSPO), region(s) of interest (ROIs), N-acetyl-N-(2-[18F]fluoroethoxybenzyl)-2-phenoxy-5-pyridinamine ([18F]-FEPPA), positron排放断层扫描(PET),白介素(IL),细胞因子(CK),eicosapentaenoic酸(EPA),Docosahexaenoic(DHA),亚油酸(LA),亚麻酸(LNA),thumor Necrosis Necrosis-necrosis-α(TNF-α)(TNF-α),Interlecin inner interlies Interlies intre inur-inter-inter-inur-1b(beinter-neur-1b(IL-1B), - 1B(IL-1B),1B(iil-1B),1B(iil-1b),1B(iil-1b),1B(iil-1B) (BDNF)和肿瘤生长因子-B(TGF-B)。
摘要:印度芥菜(Brassica juncea)是印度食用油供应的重要来源。传统的印度芥菜品种在种子中含有高比例的 18C 多不饱和脂肪酸(亚油酸和亚麻酸)和大量的长链单不饱和脂肪酸,主要是芥酸。油酸去饱和酶 (FAD2) 调节细胞膜中 18C PUFA 和种子油中 TAG 的组成。本研究旨在深入了解印度芥菜中 FAD2 基因的等位基因多样性。对三个印度芥菜品种的克隆 FAD2 基因的分析发现了一个新的 FAD2 基因,由于插入和长度上的几个 SNP,该基因具有更长的 ORF(1167 bp),这与更普遍的天然 FAD2 基因有所区别。总体而言,印度芥菜品种拥有三种 FAD2 等位基因,但不同品种中每种 FAD2 类型的成员之间的核苷酸多样性有限,这表明所检查品种之间的遗传多样性较窄。
摘要 在氮缺乏和碳源供应充足的条件下,红酵母 Rhodotorula toruloides 能够在高密度发酵中在细胞内积累大量的类胡萝卜素和三酰甘油 (TAG,或油),两者都是由前体乙酰辅酶 A 合成的。为了利用其天然的脂肪酸和类胡萝卜素生物合成的强大通量,我们的研究小组率先开发了强大的遗传操作和基因表达工具。通过反向和正向遗传方法,我们系统地剖析了脂肪酸、TAG 和类胡萝卜素生物合成、调节和能量代谢所涉及的途径。我们收集了大量的突变体,这些突变体已被证明非常有用,可以将此宿主转变为新型脂肪酸和萜类化合物的有效生产者,同时只需引入最少数量的外来基因。目前,α/γ-亚麻酸、虾青素的技术有望实现规模化和商业化。本文将讨论在红酵母中设计一锅式精油生产系统的成功和挑战。简介 季良辉于澳大利亚阿德莱德大学获得植物分子生物学博士学位。他在植物分子病毒学方面进行了博士后培训,并
出生对心肌细胞提出了代谢挑战,因为它们将燃料偏好从葡萄糖重塑为脂肪酸,以产生产后产生1,2。这种适应性部分是由产后环境变化触发的3,但是编排心肌细胞成熟的分子仍然未知。在这里我们表明,这种过渡是由母体提供的γ-亚麻酸(GLA)协调的,富含母牛奶中的18:3 omega-6脂肪酸。GLA结合并激活类维生素X受体4(RXR),配体调节的转录因子,这些转录因子在胚胎阶段在心肌细胞中表达。多方面的全基因组分析表明,胚胎心肌细胞中缺乏RXR引起异常的染色质景观,从而阻止了控制RXR依赖性基因表达的诱导,从而控制了线粒体脂肪酸稳态。随之而来的有缺陷的代谢过渡具有钝性的线粒体脂质衍生的能量产生和增强的葡萄糖消耗,从而导致心脏心脏功能障碍和死亡。最后,GLA补充诱导了在体外和体内心肌细胞中线粒体脂肪酸稳态的RXR依赖性表达。因此,我们的研究将GLA -RXR轴确定为围产期心脏代谢的母体控制的关键转录调节机制。
摘要简介:长期以来,通过研究观察到了妊娠期欧米茄3的摄入,他们表明它具有多个好处,包括,这对于消耗适当的数量很重要,因此可以避免某些并发症。目的:确定妊娠期欧米茄3的主要影响。方法论:这是一项综合评论,旨在找到有关该主题的当前科学内容。在以下评论中,使用了以下数据库:学者,虚拟健康图书馆,PubMed和Scielo,于2019年至2024年发布。结果:在发现115篇文章后,仅使用了24篇文章。结论:胎龄期间使用欧米茄3给母亲和婴儿带来许多好处,发展了婴儿的神经系统和视觉功能,并减少了早产的机会,因此在妊娠期,欧米茄3的补充非常重要。关键字:Omega 3;补充;妊娠;番茄酸。摘要简介:长期以来通过研究观察到了怀孕期间欧米茄3的摄入量,这表明它具有多种好处,对于避免正确的并发症的适当供应量至关重要。目的:确定怀孕期间欧米茄3的主要影响。方法论:通过整合综述,目的是在该主题上找到当前的科学内容。结果:在搜索后,发现115篇文章,但是仅使用24篇文章进行这项研究。在以下评论中,使用了以下数据库:学者,虚拟健康图书馆,PubMed和Scielo,于2019年至2024年发布。结论:怀孕期间的欧米茄3使用给母亲和婴儿带来许多好处,发展婴儿的神经和视觉功能,并减少了早产的机会,因此在怀孕期间,欧米茄3的补充非常重要。关键字:Omega 3;补充;怀孕;亚麻酸。
微生物与植物之间的相互作用已成为微生物学和植物生物学的重要研究领域。非生物应力,包括干旱,盐度和重金属,对全球植物生长产生了实质性影响。这些压力源,无论是单独或结合发生的,都会破坏营养的吸收并阻碍植物的整体发展(Mushtaq等,2023)。然而,有益的微生物在增强对这种非生物挑战的植物弹性方面表现出了潜力(Cardarelli等,2022; El-Shamy等,2022)。居住在根际和植物圈中的某些微生物可以促进植物水和养分,同时提供防止有害环境毒素的保护(Degani,2021; Redondo等,2022)。过去十年见证了由测序和毛质技术的进步驱动的显着步伐,从而揭示了在非生物胁迫下构成植物 - 微生物相互作用的复杂机制。这些细微的关系正在逐渐被解密,为预测和调节策略铺平道路。利用植物 - 微生物相互作用来支持植物适应非生物压力,在农业生产力,生物修复策略和生态可持续性中具有变革性的潜力。这项研究的努力旨在彰显微生物在增强植物抵抗非生物胁迫方面的重要作用。调查还深入研究了根间微生物群落对植物更广泛健康的复杂影响。Qi等。Qi等。在这个研究主题中,十项学术贡献深入研究了多种机制,通过这些机制,微生物可以帮助植物适应环境爆发,从而维护其生长和生存。总的来说,这些文章提供了有关微生物如何促进生态系统功能和植物福祉的全面观点。响应紧急市场需求和严重的非生物压力,增强植物生产和生存已成为研究的核心重点。利用RNA干扰(RNAI)技术来构建油酸去饱和酶(FAD2)基因的IHPRNA植物表达载体,从而导致油酸含量升高,并降低了菜籽中亚油酸和亚麻酸的水平。值得注意的是,根际微生物群落作为遗传评估的指标
Omega-3 长链多不饱和脂肪酸 (LC-PUFA)、二十碳五烯酸 (EPA;20:5 D 5,8,11,14,17) 和二十二碳六烯酸 (DHA;22:6 D 4,7,10,13,16,19) 现已被公认为健康均衡饮食的重要组成部分 (Napier 等人,2019 年;West 等人,2021 年)。供应 Omega-3 脂肪酸的野生捕捞渔业已达到可持续生产的最高水平;因此,满足日益增长的人口日益增长的需求的尝试依赖于替代鱼油来源 (Tocher 等人,2019 年)。亚麻荠 (Camelina sativa) 是一种油籽作物,含有高含量 ( > 35 % ) 的 α -亚麻酸 (ALA;18:3 D 9,12,15 ),并且已重建一条从 ALA 到亚麻荠 cv 中合成 EPA 和 DHA 的生物合成途径。 Celine 种子通过表达异源去饱和酶和延长酶基因,产生与海洋鱼油相当的 EPA 和 DHA 水平,以原型系 DHA2015.1(缩写为 DHA1)为例,积累了超过 25% 的 n-3 LC-PUFA(图 S1 和 S2(Petrie 等人,2014 年;Ruiz-Lopez 等人,2014 年)。英国、美国和加拿大的 DHA1 田间试验表明,omega-3 LC-PUFAs 特性在不同的地理位置和农业环境中是稳定的(Han 等人,2020 年)。同时,使用 DHA1 种子油的鲑鱼饲养试验和人类饮食研究均表明,这些转基因植物衍生油可以作为海洋衍生鱼油的有效替代品(Betancor 等人,2018 年;West 等人2021 年)。基于我们观察到的 ALA 是种子 omega-3 LC-PUFA 生产的内源性 C18 前体(Han 等人,2020 年),我们假设增加 ALA 库可以进一步增强 DHA1 亚麻荠中的 EPA/DHA 积累。DHA1 构建体已经含有 D 12 去饱和酶,可驱动脂肪酸流入 PUFA 生物合成(图 S1 和 S2)。然而,作为一种不太明显的方法,我们建议使用基因编辑的亚麻荠 fae1 突变体。亚麻荠 FAE1 与内源性 FAD2 D 12 去饱和酶(其
随着人们意识到摄入 Omega-3 脂肪酸的益处(抗炎、改善心血管健康、认知发展等),消费者对这些脂肪酸的需求正在增加(Tiwari 等人,2021 年)。膳食摄入二十碳五烯酸 (EPA) 和二十二碳六烯酸 (DHA) 可改善心血管健康,因为它们被整合到心肌细胞的磷脂双层中,从而调节离子通道,从而预防致命的心律失常 (Endo 和 Arita,2016 年)。EPA 和 DHA 还显示出其他益处,例如抗血栓、降血压、内皮松弛、抗动脉粥样硬化和抗纤维化作用 (Endo 和 Arita,2016 年)。DHA 是大脑中的主要 Omega-3 脂肪酸。摄入 DHA 可提高认知能力;流行病学研究表明,增加 DHA 的摄入可将痴呆症风险降低高达 50%(Cole 等人,2009 年)。EPA 和 DHA 还可以降低癌症风险;例如,将 EPA 和 DHA 与阿霉素结合,可引起乳腺癌细胞系中膜脂质、筏的变化(表面表达增加)和死亡受体聚集(CD95)(Ewaschuk 等人,2012 年)。根据 Grand View Research 的数据,到 2027 年,ω-3 脂肪酸市场将以 7.7% 的复合年增长率扩大(Oliver 等人,2020 年)。 Omega-3 脂肪酸包括α-亚麻酸 (ALA) (18:3, n-3)、十八碳四烯酸 (STA) (18:4, n-3)、二十碳五烯酸 (EPA) (20:5, n-3)、二十二碳五烯酸 (DPA) (20:5, n-3)、二十二碳六烯酸 (DHA) (22:6, n-3)。在所有 Omega-3 脂肪酸中,EPA 和 DHA 已被证明对健康有显著贡献,因此在营养保健品行业中属于小众产品。Omega-3 脂肪酸传统上是从鱼类等动物来源生产的。作为 EPA 和 DHA 的传统来源,鱼类面临着许多相关挑战,表明需要替代来源。鱼类使用面临的最大障碍是过度开发,这严重破坏了海洋生态系统(Sumaila 和 Tai,2020 年)。鱼类可能受到重金属、杀虫剂、多氯联苯 (PCB) 等的污染,长期食用受污染的鱼类会导致不同类型的健康问题 (Basu 等人,2021 年)。由于 EPA 和 DHA 对热敏感,因此食用前烹饪鱼类会导致可供食用的有益 EPA 和 DHA 量极少 (Peinado 等人,2016 年)。这些相关的缺点损害了通过食用鱼类获取 EPA 和 DHA 的益处。为了满足对 omega-3 的需求,人们已经探索了微藻、转基因生物 (GMO)(转基因植物、转基因真菌)等替代来源 (Zhao 等人,2016 年)。表 1 总结了用于生产 EPA 和 DHA 的不同转基因来源以及相应的 EPA 和 DHA 产量。微藻可以自然产生 omega-3 脂肪酸,不会争夺肥沃的土地或淡水(对于海洋藻类而言)。微藻可以自然吸收二氧化碳,使其在工业中的使用既环保又可持续。然而,从藻类中生产营养保健品的过程需要努力才能在经济上可行。需要新的策略来减少
科学作品的原始文章发表在PubMed索引的期刊上:-Peter Eng,Giovanni Ferrari,Oliver Fuchs等。患有呼吸道过敏的儿童 - 免疫疗法的建议。瑞士医学论坛2023; 23(36):1282-1285。-Peter Schmid-Gendelmeier,Barbara Ballmer-Weber,Andreas Bircher,JörgFaeh,JörgFaeh,Giovanni Ferrari,JürgenGrabbe,Arthur Helbling,Oliver Hausmann,LukasJörg,LukasJörg,Dii lucca,diiik sperniiki sperniiki sperniik frans, Yawalkar。瑞士专家关于慢性自发性荨麻疹治疗的意见。Rev Med Suisse2016。- 达格玛·西蒙(Dagmar Simon),彼得·A·英格(Peter A.γ-亚麻酸水平与晚期初月油在特应性皮炎患者中的临床功效相关。adv ther 2014; doi 10.1007/s12325-014-0093-0。-Cox DW,Bizzinino J,Ferrari G,Khoo SK,Zhang G,Whelan S,Lee WM,Bochkov YA,Geelhoed GC,Goldblatt J,Goldblatt J,Glad,Laing ia,LeSouëfPn。急性喘息儿童的HRV-C感染与急性呼吸道医院入院增加有关。Am J呼吸危机护理Med 2013; doi:10.1164/rccm.201303-0498oc。- Schuler S,Ferrari G,Schmid-Grendelmeier P和Harr T.基于微阵列的乳胶过敏的组件分辨诊断:孤立的IgE介导的对乳胶纤维纤维素HEV B8的敏感性可能充当混杂因素。临床和转化过敏2013; 3:11,doi:10.1186/2045-7022-3-11。啊哈!新闻2010; 1:34。-Ferrari G,Eng Pa。学龄前儿童中的食物过敏:诊断和治疗的现状。Ther Mitt 2012; 69(4):219-24,doi:10.1024/0040-5930/a000277。-Ferrari G,EngPa。Ige介导的食物过敏,瑞士婴儿和儿童。瑞士医学Wkly 2011; 141:W13269; doi:10.4414/smw.2011.13269。-Vauthey JN,Abdalla EK,Doherty DA,Gertsch P,Ferrari G等。身体表面积和体重预测西方成年人的总肝脏体积。肝翻译2002; 8:233-40,doi:10.1053/jlts.2002.31654。发表在《医学杂志》上的原始文章:-Ferrari G,Eng Pa。对Bee和Waspengift的过敏。免疫疗法时,哪些孩子会澄清哪些紧急药物?练习儿科期刊2012; 2:21-5。-Ferrari G.有关专家的问题:疫苗接种和过敏。-Ferrari G,Mura M,Eng Pa。神经炎:营养的影响。ARS Medici 2010; 5:193-8。-Ferrari G,Eng Pa。并非所有敏感性都意味着过敏:童年的食物过敏。皮肤病学实践2010; 2:4-7。-Ferrari G,Mura M,Eng Pa。神经炎:营养的影响。瑞士瑞士医学杂志2008; 3:13-7。国会活动邀请会谈: - 关于“特定免疫疗法”的邀请演讲。SGDV虚拟国会2021年,瑞士伯尔尼,2021年3月18日。- 邀请关于“儿童免疫疗法更新”的演讲。AIU虚拟国会2021年,瑞士伯尔尼,2021年1月30日。在大学的讲座 - 关于“呼吸道超敏反应”的演讲,卢加诺医学硕士学校,卢加诺,2021 - 2023年 - 关于“胃肠道高压性高压性”的演讲玛格丽特公主儿童医院,2011年9月21日,澳大利亚珀斯儿童健康文凭。- 邀请关于“学龄儿童的Allery管理 - 实际更新”的讨论。SSP年度国会2019年,瑞士贝林佐纳,2019年6月7日。- 关于“病例报告的互动讨论”的研讨会,2018年国际分子过敏症会议,瑞士苏黎世,2018年4月21日,2018年4月21日。- 邀请谈论“奥马珠单抗的未来治疗严重的过敏性哮喘”,2017年SSAI年度国会,瑞士圣加伦,2017年6月1日,瑞士。- 邀请关于“ Antergiediagiediangnostik-和Therapie:是Gibt es Neues?