因此,下一个提到的结果遵循。基于通过实验测量左手和右手拇指运动过程中大脑电活动获得的EEG信号,我们获得了用于训练集合随机森林算法的输入和输出数据,该算法是通过Scikit-Learn库的软件工具实现的。使用Joblib库的软件工具,可以通过将N_JOBS HyperParameter的值设置为-1时在物理内核和计算机流程上训练集合的随机森林算法时并行化计算。基于DASK库的软件工具,将并行计算分布在群集计算机系统的物理核心及其流中,这使得组织高性能计算以训练集合随机森林算法。结果,根据质量指标:准确性,ROC_AUC和F1评估了创建算法,软件 - 硬件计算管道的质量。所有这些一起制作
摘要。人类计算机的交互已从命令行演变为图形,直至有形的用户界面(TUI)。tuis代表了将物理对象纳入数字环境中的新范式,以便为用户提供更丰富,更自然和直观的互动手段。本文回顾了TUIS在认知人体工程学,教育和行业中的应用,并特别强调了TUI在减少认知负荷以及改善保留率和增强解决问题的行为方面可能产生的潜在影响。它涵盖了TUI认知益处的各种案例研究,分布式和体现的认知,可伸缩性和可访问性问题的框架,减少技术障碍以及用户不情愿的方法以及TUI与IoT合并的方式。作者还讨论了TUI如何在智能环境中的网络和控制方面看到巨大的改进。从上述内容中,尽管Tuis承诺与常规GUI有关的巨大好处,但在不同应用程序中的全面利用要求解决成本,适应性和包容性的广泛使用。
我们正在快速经历一个历史时刻:人们在一台计算机前工作,由一台小型 CRT 控制,专注于仅涉及本地信息的任务。联网计算机变得无处不在,在我们的生活中以及科学、商业和社会互动的基础设施中发挥着越来越重要的作用。为了在新千年推动人机交互的发展,我们需要更好地理解新兴的交互动态,其中焦点任务不再局限于桌面,而是延伸到一个复杂的网络信息世界和计算机介导的交互。我们认为分布式认知理论在理解人与技术之间的交互方面发挥着特殊的作用,因为它的重点一直是整个环境:我们在其中真正做什么以及我们如何协调其中的活动。分布式认知为如何思考设计和支持人机交互提供了彻底的重新定位。作为一种理论,它专门用于理解人与技术之间的交互。在本文中,我们提出分布式认知作为人机交互的新基础,勾勒出一个综合的研究框架,并使用我们早期工作中的选集来提出该框架如何为数字工作材料的设计提供新的机会。
每篇论文的演讲时间不应超过 30 分钟,这样我们才能有足够的时间进行讨论。演讲应侧重于阐述论文的动机、相关工作、工具/研究设计、研究问题、发现、局限性和未来工作。为了使您的演讲更具洞察力,请尝试以文献为中心,并告诉观众为什么首先提出这项工作,它如何增进人们对某个主题的理解,以及它与过去其他相关工作有何不同。我们还鼓励您将指定论文与您自己的研究联系起来。您应该准备一组问题(您可以自己提出问题,也可以基于其他学生在 Piazza 上发布的问题),并在演讲后与讲师一起根据这些问题共同主持课堂讨论。
并行和分布式处理的可用性、合理的成本以及数据源的多样性促进了人工智能(AI)的先进发展。人工智能计算环境的发展并不随着社会、法律和政治环境的变化而变化。在考虑部署人工智能时,部署背景以及针对该特定环境的人类智能增强的最终目标已经成为专业、组织和社会的重要因素。在本研究评论中,我们重点介绍了人工智能系统近期发展的一些重要社会技术方面。我们详细阐述了构成增强智能基础的人机交互的复杂性。我们还强调了与这些互动有关的伦理考虑,并解释了增强智能如何在塑造人类工作的未来方面发挥关键作用。
用户控制图片(亮度、对比度、清晰度、背景级别、色调、颜色、降噪、伽玛选择、低蓝光、色温、颜色控制、过扫描、图片重置)、屏幕(缩放模式、自定义缩放、屏幕重置)、音频(平衡、高音、低音、音量、音频输出(线路输出)、最大。音量,最小。音量、静音、音频重置、音频输出同步、扬声器设置)、配置 1(Android 启动器、开启状态、触摸锁、触摸模式、鼠标模式、面板保存、RS232 路由、启动源、WOL、conf.1 重置、恢复出厂设置)、配置 2(OSD 超时、OSD H 位置、OSD V 位置、系统旋转、信息 OSD、徽标和动画、徽标设置、动画设置、显示器 ID、显示器信息、HDMI 版本、conf.2 重置)、高级选项(信息亭模式、侧边栏、无信号图像、电动支架、红外控制、电源 LED 灯、风扇、关闭定时器、时间表、单线 HDMI、单线 HDMI 关闭、故障转移、语言、OSD 透明度、省电、高级选项重置)
用户控制图片(亮度,对比度,清晰度,背部,色彩,颜色,降噪,选择,低蓝光,低光,颜色温度,颜色控制,颜色控制,超级,图片重置),屏幕(缩放模式,自定义缩放,屏幕重置),音频(balance,balance,balance,traleble,treble,bass,bass,bass,audio nof(line out out(line),最高),最大volume, mute, audio reset, audio out sync, speaker setting), configuration 1 (Android launcher, switch on state, Touch lock, Touch mode, mouse mode, panel saving, RS232 routing, boot on source, WOL, conf.1 reset, factory reset), configuration 2 (OSD timeout, OSD H position, OSD V position, system rotation, info OSD, logo and animation, logo setting, animation设置,监视ID,监视信息,HDMI版本,conf2重置),高级选项(售货亭模式,侧栏,无信号图像,电动支架,电动控制,电源LED照明,风扇,关闭计时器,时间表,带有一根电线的HDMI,带有一线电线的HDMI,一根电线,故障转移,语言,OSD透明度,电源节省,电源节省,高级选项,高级选项重置)
最近在操纵和运动领域取得了显着进展,但移动操作仍然是一个长期以来的挑战。与运动或静态操纵相比,移动系统必须在非结构化和动态环境中可行的多种长距离任务。尽管应用程序广泛且有趣,但在开发这些系统(例如基础和手臂之间的协调)时,有很多挑战,依靠在船上感知到感知和与环境互动,最重要的是,同时整合了所有这些部分。先前的作品使用模块化技能来解决问题,以使其动机和操纵被微不足道地捆绑在一起。这引起了多个限制
背景 ................................................................................................................................ 1 目标 ................................................................................................................................ 2 交互系统 .............................................................................................................................. 2 过去 .............................................................................................................................. 2 现在 .............................................................................................................................. 2 未来 .............................................................................................................................. 3 实用性和可用性 ............................................................................................................. 4 实用性 ............................................................................................................................. 4 可用性 ............................................................................................................................. 4 为什么 HCI 很重要? ............................................................................................................. 5 生产力 ............................................................................................................................. 5 生活质量 ............................................................................................................................. 5 安全关键系统
摘要 - 为了充分利用移动操纵机器人的功能,必须在大型未探索的环境中自主执行的长途任务。虽然大型语言模型(LLMS)已显示出关于任意任务的紧急推理技能,但现有的工作主要集中在探索的环境上,通常集中于孤立的导航或操纵任务。在这项工作中,我们提出了MOMA-LLM,这是一种新颖的方法,该方法将语言模型基于从开放式摄影场景图中得出的结构化表示形式,随着环境的探索而动态更新。我们将这些表示与以对象为中心的动作空间紧密地交织在一起。重要的是,我们证明了MOMA-LLM在大型现实室内环境中新型语义交互式搜索任务中的有效性。最终的方法是零拍摄,开放式摄影库,并且可以易于扩展到一系列移动操作和家用机器人任务。通过模拟和现实世界中的广泛实验,与传统的基线和最新方法相比,我们证明了搜索效率的显着提高。我们在http://moma-llm.cs.uni-freiburg.de上公开提供代码。
