摘要。非交互式零知识证明(NIZK)是阈值加密系统中的必不可少的构件,例如多党签名,分布式关键产生和可验证的秘密共享,允许当事方在不揭示秘密的情况下证明正确的行为。此外,普遍合并(UC)Nizks在较大的密码系统中启用无缝组成。构建Nizks的一种流行方式是使用Fiat-Shamir变换来编译交互式协议。不幸的是,菲亚特 - 沙米尔(Fiat-Shamir)转换的nizk需要倒带对手,并且不可直线提取,这与UC相反。使用Fischlin的转换具有直线提取性,但以基本协议的许多重复为代价,导致具体效率差且难以设定参数。在这项工作中,我们提出了一个简单的新变换,该转换将代数关系的Sigma协议编译为UC-NIZK协议,而没有任何重复的开销。
摘要:形成稳定的电化学相互作用,包括固体电解质间相(SEI)和阴极电解质相间(CEI)对于开发高性能碱金属电池至关重要。SEI/CEI的稳定性主要取决于其化学和结构。当前对SEI/CEI设计的研究主要集中于通过调节电解质配方来调节其化学。在这项工作中,我们展示了SEI/CEI的化学和结构都可以通过温度调制的形成策略轻松调节。具体而言,使用加热条件下的预充电来调节电解质分解反应的类型和动力学,然后在低温存储下冷冻,以控制电极界面上分解产物的沉积行为。研究表明,高温预充电会影响LI+的配位结构并加速分解反应动力学,从而导致大量阴离子分解。随后的低温存储迅速降低了在高温下产生的分解产物的溶解度,从而促进了两个电极对不溶性产物的沉积,从而导致密集且稳定的SEI/CEI。强大的SEI/CEI实现了中等浓度的基于以太电解质的4.5 V LI || NCM811单元的稳定循环,
近年来,在音频生成的深度学习模型中已取得了重大进展,提供了有希望的工具用于Musical Creation。在这项工作中,我们研究了在互动舞蹈/音乐表演中使用深度音频生成模型的使用。我们采用了一种表演主导的研究设计方法,建立了研究者/音乐家与舞者之间的艺术研究合作。首先,我们描述了我们的运动互动系统 - 整合深度音频生成模型,并提出了三种用于体现深层空间的探索方法。然后,我们详细介绍建立以系统共同设计为中心的性能的创作过程。最后,我们报告了舞者访谈的反馈,并讨论结果和观点。代码实施在我们的GitHub 1上公开可用。
1简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2 1.1我们的结果。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 1.2申请。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 2技术概述。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。5 2.1构建块:非相互作用乘法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2 NIDPF构造的概述。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6 3预序。 。 。 。 。 。 。 。 。 。 。 。5 2.2 NIDPF构造的概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 3预序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.1表示法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.2添加秘密共享。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.3加密假设。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 3.4 NIDLS框架。 。 。 。11 3.4 NIDLS框架。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 3.5度2秘密键HSS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 4非相互作用乘法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 4.1 NIM具有乘法输出重建。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 4.2矩阵乘法的简洁nim。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 4.3基于组假设的构造。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 4.4基于晶格假设的构造。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 5非相互作用DPF。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 5.1模拟算术模量N.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 5.2 NIDPF框架。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 5.3 SXDH的随机付费实例化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 6对简洁的多键HSS的概括。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 7同态秘密共享。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32
刘仲民,杨富君,胡文瑾 .多尺度特征交互的伪标签无监督域自适应行人重识别 [J].光电工程, 2025 , 52 (1): 240238 Liu Z M, Yang F J, Hu W J. Multi-scale feature interaction pseudo-label unsupervised domain adaptation for person re- identification[J].Opto-Electron Eng , 2025, 52 (1): 240238
背景:性障碍性贫血是一种严重的血液学疾病,其标志是全年症和骨髓衰竭。ICU的入院通常反映了需要重症监护的疾病进展或并发症。预测这些患者的短期生存对于个性化治疗和资源优化至关重要。编号图为整合临床参数提供了一种实用的工具,提供了准确的可视化生存预测,以指导ICU中性贫血患者的决策。方法:使用模拟IV数据库,我们确定了被诊断为性贫血的ICU患者。从数千个可用的变量中,我们从五个维度上提取数据:人口统计学,合成指标,实验室事件,合并症和药物使用情况。基于现有的性质贫血研究,进一步完善了400多个变量,并应用了机器学习技术来确定建模的七个最有效的预测指标。使用机器学习方法进行预处理,这些预测因素的可行性通过其他分类和回归模型验证,验证方法是AUROC。此外,使用来自EICU协作研究数据库的数据进行了外部验证,以评估我们的模型的普遍性。使用逻辑回归(LR)构建了互动命名图,以预测患有同性血症患者的7天,14天和28天的死亡率。结果:这项研究中总共包括了1,662名被诊断为性贫血的患者,其中7:3的比例分为训练和测试队列。逻辑回归模型表现出强烈的预测性能,分别为7天,14天和28天死亡率预测的AUC值分别达到0.8227、0.8311和0.8298。使用EICU数据库的外部验证进一步证实了该模型的通用性,AUC值为0.7391、0.7119和0.7093。这些结果突出了该模型在预测性障碍性贫血患者短期生存方面的稳定性和有效性。结论:APS III领导的一组七个预测因子被证明可有效地建模性质贫血患者的短期生存。使用这些预测因素,COX和Logistic回归模型生成了列线图,这些图可以准确预测7天,14天和28天的死亡率。这些工具可以支持临床医生进行个性化的风险评估和决策。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
广泛的治疗曲目已适用于肿瘤学家,包括放射性和化学疗法,小分子和单克隆抗体。但是,药物疗效可以受到使癌细胞逃脱治疗的遗传变化的限制。在这里,我们设计了一个网络工具,可促进癌症中药物敏感性基因组学(GDSC)数据库的数据分析,并在265种认可的化合物上与癌细胞系百科全书中的1001个细胞系(ccle,ccle,cbioportal)中的1001个细胞系有关的大量遗传变化进行了批准。WebTool计算一组遗传改变的耐药性比值比。它提供了分配给细胞信号通路的单个化合物或一组化合物的功效的结果。使用此网络工具,我们复制了已知的遗传驱动因素,并确定了新的候选基因,种系变体,共同享受和药物基因组耐药性和药物重新利用的药物基因组修饰剂。WebTool可用性:https://tools.hornlab.org/gdsc/。
应用程序“ ClimeHop”已设计为在课堂设置中单独使用的学生使用,在该课程中,在学生完成应用程序的不同步骤之后,讲师可以领导讨论。有关讨论会议可能的问题和主题的建议,请参见下面。取决于学生的背景(例如经济学,生态或环境科学),某些问题可能比其他问题更相关。我们还鼓励讲师提出针对当地保护情况(包括保护政策工具)的其他问题。此外,物种保护和气候变化是迅速发展的主题。因此,我们会鼓励讲师在其课堂讨论中包括当前的研究和政策发展。虽然没有关于气候变化和生物多样性损失等不断发展的主题的课堂讨论指南可以解决所有相关问题,但我们希望提供一些可能讨论的可能方面的灵感。我们将可能的讨论问题构成了三个一般主题:“生物多样性保护”,“保护成本和成本效益的重要性”以及“气候变化及其对成本效益的生物多样性保护的影响”。