研究 MTI 致力于为各级政府和私营部门提供政策导向研究,以促进最佳地面交通系统的发展。研究领域包括:自行车和行人问题;为公共和私营部门的交通改善提供资金;多式联运连通性和一体化;交通系统的安全性和保障性;交通系统的可持续性;交通/土地使用/环境;交通规划和政策制定。认证研究员负责研究。认证需要高级学位,通常是博士学位,有学术出版物记录和专业参考资料。研究项目最终会以同行评审的出版物形式发表,可在 MTI 网站 TransWeb 上找到(http://transweb.sjsu.edu)。
系统的体系结构反映了系统的使用方式以及它与其他系统和外界的交互方式。它描述了所有系统组件的互连以及它们之间的数据链接。系统的体系结构反映了其结构,功能和关系的思考方式。
FEA 网格中的推进剂。在每个 LS-DYNA 时间步骤中,CADPROG 使用从 LS-DYNA 模拟反馈的运动数据(冲程、速度、腔室容积)进行分析运行。然后将计算出的压力以交互方式应用于活塞或 LS-DYNA 模型中的任何适用表面网格。
摘要 目的。生物信号控制是一种交互方式,它允许用户通过解码来自用户动作或思想的生物信号来与电子设备交互。这种与设备的交互方式可以增强用户的自主感,使瘫痪患者能够与日常设备进行交互,而这些设备对他们来说本来很难使用。它还可以通过使交互感觉更自然、更直观来改善对假肢和外骨骼的控制。然而,在目前的技术水平下,仍有几个问题需要解决,以便可靠地从生物信号中解码用户意图,并提供比其他交互方式更好的用户体验。一种解决方案是利用深度学习 (DL) 方法的进步来提供更可靠的解码,但代价是增加计算复杂性。本范围综述介绍了 DL 的基本概念,并帮助读者将 DL 方法部署到应在现实条件下运行的实时控制系统中。方法。本综述的范围涵盖任何电子设备,但重点是机器人设备,因为这是生物信号控制中最活跃的研究领域。我们回顾了与实施和评估包含 DL 的控制系统有关的文献,以确定该领域的主要差距和问题,并制定了如何缓解这些问题的建议。主要结果。结果强调了使用 DL 方法进行生物信号控制的主要挑战。此外,我们还能够制定指南,指导如何在生物信号控制系统中使用 DL 来设计、实施和评估研究原型。意义。这篇评论应该可以帮助刚接触生物信号控制和 DL 领域的研究人员成功部署完整的生物信号控制系统。各自领域的专家可以使用本文来确定可能的研究途径,以进一步推动使用 DL 方法进行生物信号控制的发展。
Web Intelligence (WebI) 是一种基于 Web 的报告和分析工具。它提供了一种使用标准选项以交互方式查看和分析来自各种企业系统的数据的方法。 使用常用工具栏、下拉列表、用于快速添加/删除对象的各种选项等创建新查询/报告或修改现有查询/报告。 使用常用文件结构保存和检索查询/报告。 在运行或保存查询之前预览结果。 管理页面布局和排序/过滤数据。 使用 Web 浏览器显示数据或导出为其他格式。
1 )交互性与安全性的矛盾问题。在当前智能座 舱所处的发展阶段,新型人车交互方式的安全性尚需 要进一步检验,繁复的人机交互会对驾驶人造成分神 影响甚至带来安全隐患;在未来智能座舱发展的第三 阶段,还将面临着人车交互的信任问题。解决该问题 是智能座舱实现实质性发展的关键。 2 )舱内交互与舱外交互的协同问题。智能座舱 作为移动生活智慧终端的“第三空间”,其交互范畴 需全面覆盖汽车舱内及舱外的立体化时空场景,不仅 需要解决舱内的人机交互问题,也要解决舱外的人机 交互问题,以及舱内舱外人机交互的协同问题。现有 研究已部分解答了该问题,但仍需结合真实应用场景 继续深入研究。 3 )智能座舱与其他智慧生活形态的连接问题。 汽车智能座舱是智慧城市的重要组成部分,其交互设 计不是孤立的,需有机对接到整个智慧城市的系统 中。目前,对该问题的研究关注还比较少,有较大的 研究空间。 4 )智能交互的应用实现问题。虽然智能交互的 部分关键技术已实现了突破,但离普遍应用还较远。 其根本原因在于交互技术的发展还不够充分,主要体 现在信息感知、信息传输、信息处理等三个方面,具 体为传感探测仪器的精度不足、高速物联通信基础设 施建设不足、芯片及软件产品的算力不足。这些问题 的解决将决定智能座舱交互设计的发展速度。 综合以上研究现状与问题分析,汽车智能座舱交 互设计的发展趋势总结如下: 1 )交互模态多元化、复合化。基于视觉、听觉、 触觉等多感官通道的立体融合式交互模态将成为主 流,结合更加深入的效率、安全、信任等人机交互研 究,将逐渐发展成为全面的智能交互体系。 2 )交互方式人性化、情感化。虽然交互模态日 益多元化,但座舱人机交互的方式将变得越来越简 单,汽车将自发迎合人的自然交互习惯,让驾驶员以 更少的注意力完成更多的人机交互,从而找到智能座 舱交互性与安全性的平衡点。同时座舱人机交互将更 注重对人的情感需求的感知与响应,成为情感化的智 能伙伴。 3 )交互设计场景化。智能座舱的交互设计将结 合更多的场景催生更丰富的交互方案,不仅从车内场 景扩展到车外场景,也会由单一场景扩展到复合场 景,甚至扩展到智慧生活的任意场景中,并实现交互 模式的订制化,使汽车智能座舱真正成为未来智慧生 活空间的一部分。 4 )交互相关技术日益成熟。在国家政策的持续 引导与驱动下,硬件技术、软件技术、物联通信基础 设施等都将迎来持续的建设、发展与完善,为智能座 舱交互设计的全面发展提供技术基础。
本课程涵盖了互联网的技术和协议。演讲涵盖了Internet协议的设计原理,包括Internet协议(IP),地址解决方案协议(ARP),Internet控制消息协议(ICMP),用户数据报协议(UDP)和传输控制协议(TCP),域名系统(DNS)和路由协议(RIP,OSPF,OSPF,BGP)。除了对实际网络设置中的Internet协议进行深入研究外,您还将获得在虚拟化网络环境中工作并获得有用的网络技能的动手经验。通过将计算机网络付诸实践,本课程旨在教授网络协议的工作方式以及网络系统的交互方式。
在交互式触觉系统中,“表面”既是触摸的支持,也是图像的支持。虽然触摸表面的厚度、形状和硬度已逐渐发生改变,但其交互方式仍然像第一批设备一样,仅限于用手指以简单的手势接触屏幕,假装操纵显示的内容。触觉,即使对于集成到航空或汽车等关键系统中的触觉设备,仍然基本上作为视觉的延伸,用于指向和控制。虽然感知现象学、生态感知和有形与具身交互的理论都承认身体、运动技能和与环境的交互在感知现象中的重要性,但继续将视觉视为触觉交互的首要感觉似乎有些简单化。
随着规划和自主性在航天器上越来越多地得到部署,任务将面临地面操作团队指挥和与航天器交互方式的范式转变:从指定定时命令序列转变为机载自主性将根据航天器的状态和感知环境制定的高级目标。在本文中,我们介绍了一项持续努力,即通过建模科学和工程意图/目标、预测结果、评估航天器状态和性能以及维护用于机载决策和地面监控的模型来开发一个支持地面操作的综合框架。具体来说,我们描述了自主航天器操作中关键的特定知识工程方面,以及我们提出如何应对机载自主操作所带来的挑战。