摘要。尽管即使是非常先进的人工系统也无法满足人类成为社会互动适当参与者所需的苛刻条件,但我们认为并非所有人机交互 (HMI) 都可以适当地简化为单纯的工具使用。通过批评标准意向性主体解释的过于苛刻的条件,我们建议采用一种最小方法,将最小主体归因于某些人工系统,从而提出将采取最小联合行动作为社会 HMI 的案例。在分析此类 HMI 时,我们利用了丹尼特的立场认识论,并认为出于多种原因,采取意向性立场或设计立场可能会产生误导,因此我们建议引入一种能够捕捉社会 HMI 的新立场——人工智能立场。
本论文研究了不同的用户界面 (UI) 设计如何影响用户对生成式人工智能 (AI) 工具的信任。我们进行了一项实验,采用绿野仙踪方法测试了三种具有不同 ChatGPT UI 变体的工具的信任级别。来自不同学科的九名志愿大学生参加了实验。我们使用问卷来评估参与者在与每种工具交互后以及与所有工具交互后的信任感知。结果表明,参与者之间的信任水平受到生成式 AI 的 UI 设计的影响,尤其是头像设计和文本字体。尽管共享相同的文本源,但大多数参与者认为 ChatGPT 与其他工具相比最值得信赖。结果还强调了对话界面在与生成式 AI 系统建立信任方面的重要性,参与者表示更喜欢促进自然和引人入胜的交互的界面。该研究强调了 UI 对信任的重大影响,旨在鼓励对生成式 AI 更加谨慎的信任。
刘仲民,杨富君,胡文瑾 .多尺度特征交互的伪标签无监督域自适应行人重识别 [J].光电工程, 2025 , 52 (1): 240238 Liu Z M, Yang F J, Hu W J. Multi-scale feature interaction pseudo-label unsupervised domain adaptation for person re- identification[J].Opto-Electron Eng , 2025, 52 (1): 240238
摘要 — 触觉反馈在广泛的人机/计算机交互应用中至关重要。然而,触觉设备的高成本和低便携性/可穿戴性仍然是尚未解决的问题,严重限制了这种原本很有前途的技术的采用。电触觉界面具有更便携和更可穿戴的优势,因为它们的执行器尺寸减小,功耗和制造成本更低。电触觉反馈在人机交互和人机交互中的应用已被探索,以促进假肢、虚拟现实、机器人遥控操作、表面触觉、便携式设备和康复等应用中的基于手的交互。本文介绍了电触觉反馈的技术概述,以及其在基于手的交互中的应用的系统综述和荟萃分析。我们根据应用类型讨论了不同的电触觉系统。我们还对研究结果进行了定量讨论,以提供对最新技术的高层次概述并提出未来的方向。电触觉反馈系统显示出更高的便携性/可穿戴性,并且它们成功地呈现和/或增强了大多数触觉、引发感知过程并在许多场景中提高了性能。然而,我们发现了知识差距(例如,实施方案)、技术(例如,反复校准、电极的耐用性)和方法(例如,样本大小)缺陷,这些缺陷应在未来的研究中得到解决。
• 您的姓名 • 您的部门 • 您正在处理的作业以及您遇到的步骤 • 您为解决问题所做的工作 • 如果问题与模拟器有关,请将整个项目压缩并通过电子邮件发送,清楚标明您需要帮助的作业,并附上简要说明。以下是简要说明的示例:“ Cherner 博士,我在处理作业 #2 的第 3 步时遇到了问题,它给出了错误。我已多次运行代码,并确保语法正确。我的文件已压缩到一个文件夹中并附加。谢谢。” • 请不要快速连续发送多封电子邮件。讲师可能会要求学生将几封电子邮件改写为一封电子邮件,只回答一个问题。 • 发送电子邮件后,请继续完成作业。发送电子邮件并不能成为学生停止继续的借口。完成其他作业,或继续完成您遇到问题的作业。如果您解决了问题,请发送电子邮件给讲师。 • 任何时候都要求遵守正确的网络礼仪和尊重他人的行为。
摘要 - 大脑接口技术将很快向公众提供。在障碍的情况下,将替换或补偿身体残疾。但是,这也适用于所有寻求和平意识的人,从没有其他类型的命令中控制环境,而是直接从大脑中。这种设备可以由未经训练的未经训练和新手用户轻松处理。该公司设计和训练了大脑计算机接口,在本文中,我们提出了一种方法来确定如何使用这种设备来控制机器人。该方法建议确定适合用户状态和机器人在环境约束的能力的合作模式。人机合作原则支持方法论方法。
技术,Karnataka 2 BE Scholar,CSE,部门,Shri Dharmasthala Manjunatheshwara技术学院,卡纳塔克邦摘要 - 该研究提出了一种基于手势的交互系统,旨在使用OpenCV和MediaPipe实时控制。此系统使用手势来提供一种直观且不接触的方式来与计算机进行交互,从而为与传统输入设备(如鼠标或键盘等传统输入设备)挣扎的人相互访问。使用单个网络摄像头,该系统连续捕获并监视手动移动。这些运动是通过模式识别算法处理的,以准确识别特定的手势,每个手势都与各种计算机操作相对应,包括鼠标运动,咔嗒声和滚动。该系统是针对用户友好性和效率进行设计的,使用户可以在无人接触的情况下轻松浏览其计算机屏幕。研究的结果强调了使用手势来实现基本计算机控制任务的实用性和有效性,在日常和专业计算方案中提出了一种有希望的无提交互方法。索引术语 - 手势识别,OpenCV,MediaPipe,小鼠控制,人类计算机相互作用。
• 您的姓名 • 您的部门 • 您正在处理的作业以及您遇到的步骤 • 您为解决问题所做的工作 • 如果问题与模拟器有关,请将整个项目压缩并通过电子邮件发送,清楚标明您需要帮助的作业,并附上简要说明。以下是简要说明的示例:“ Cherner 博士,我在处理作业 #2 的第 3 步时遇到了问题,它给出了错误。我已多次运行代码,并确保语法正确。我的文件已压缩到一个文件夹中并附加。谢谢。” • 请不要快速连续发送多封电子邮件。讲师可能会要求学生将几封电子邮件改写为一封电子邮件,只回答一个问题。 • 发送电子邮件后,请继续完成作业。发送电子邮件并不能成为学生停止继续的借口。完成其他作业,或继续完成您遇到问题的作业。如果您解决了问题,请发送电子邮件给讲师。 • 任何时候都要求遵守正确的网络礼仪和尊重他人的行为。
随着金融服务的数字化转型,现代银行业中的金融犯罪已经显着发展,对传统预防方法提出了前所未有的挑战。这项全面的综述研究了人工智能(AI),网络安全框架和数据科学方法的整合,以打击银行业内的金融犯罪。我们分析了AI驱动的解决方案的当前状态,包括机器学习模型,实时检测系统以及已改变金融犯罪预防的高级分析框架。审查综合了最近的研究和行业实施的发现,突出了AI技术与网络安全措施之间在创建强大的防御机制方面的协同关系。我们的分析表明,尽管与传统方法相比,AI驱动的解决方案表明了较高的检测率和误报降低,但在数据隐私,法规合规性和系统集成领域仍存在重大挑战。本文结束了结论,确定关键的研究差距并提出未来的方向,以增强基于AI的金融犯罪系统的有效性。本综述为研究人员,银行专业人员和政策制定者提供了宝贵的见解,该公司在人工智能,网络安全和预防金融犯罪的交汇处。
本研究研究了人工智能(AI)在个性化学习中的双重作用,探讨了AI如何促进和阻碍各种学习者的个性化教育经验。AI技术(例如自适应学习平台,智能辅导系统和数据分析工具)提供了量身定制的途径,可以增加参与度,适应学习差异并改善学术成果。然而,挑战也出现,包括算法偏见,对技术过度依赖以及数据隐私和人类互动的潜在妥协。的发现表明,尽管AI可以增强个性化的学习,但需要仔细的整合,以避免加剧差异并支持批判性思维和社交技能。教育工作者的作用仍然是必不可少的,并提出了专业发展的建议,以使教师有效和道德地利用AI的技能。本研究强调了平衡方法在AI集成中的重要性,将技术工具与以人为本的教学实践相结合,以创造包容性,公平和有效的学习环境。