细胞自动机 (CA) 是数学的一个分支,它探索控制自主单元(称为细胞)行为的简单规则如何导致复杂的突发模式。计算领域的先驱约翰·冯·诺依曼在 CA 的发展中发挥了重要作用。尽管冯·诺依曼以现代计算机的基础架构(“冯·诺依曼架构”)而闻名,但他晚年对 CA 着迷不已。他死后出版的著作《计算机与大脑》深入探讨了他对简单、分散的规则如何产生类似于生物过程的智能行为的思考。
早期对物理人机交互 (pHRI) 的研究必然侧重于设备设计——创建兼容和传感硬件,如外骨骼、假肢和机械臂,使人们能够安全地与机器人系统接触并交流他们的协作意图。随着硬件功能已足以满足许多应用的需求,并且计算能力越来越强大,支持流畅和富有表现力地使用 pHRI 系统的算法已开始在确定系统的实用性方面发挥重要作用。在这篇评论中,我们描述了一系列用于调节和解释 pHRI 的代表性算法方法,描述了从基于物理类比的算法(如导纳控制)到基于高级推理的计算方法的进展,这些方法利用了多模态通信渠道。现有的算法方法在很大程度上支持特定于任务的 pHRI,但它们不能推广到多功能的人机协作。因此,在整个评论和我们对下一步的讨论中,我们认为新兴的具身