因此,本文提出了一种新颖的直流微电网 (DCMG) 交叉开关架构,可以将时变电气拓扑安装到现有的物理架构上。我们通过提出一种以电源交叉开关为中心的系统组织来改进最先进的技术,该系统支持软件定义的电气拓扑和相应的数字控制架构。这使得能够处理从一组能源参与者到另一组能源参与者的动态和透明切换(切换操作)。我们的方法通过其灵活性提供了显着的优势,例如通过选择电源和负载之间的适当路由来最大限度地减少配电/转换损耗。由于数字控制架构对多个电压和电流进行恒定的高频监控,因此该方法能够设置一种反应性故障检测和缓解措施,能够在不中断能源输送的情况下从各种故障中恢复。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 — 卷积神经网络 (CNN) 是最重要的深度神经网络 (DNN) 类别之一,有助于解决许多与图像识别和计算机视觉相关的任务。它们使用传统 CMOS 技术和数字设计技术的传统实现仍然被认为非常耗能。浮点 CNN 主要依赖于 MAC(乘法和累加)运算。最近,基于 XNOR 和位计数运算的经济高效的 Bite-wise CNN 已被视为可能的硬件实现候选。然而,由于内存和计算核心之间密集的数据提取导致的冯诺依曼瓶颈限制了它们在硬件上的可扩展性。XNOR-BITCOUNT 操作可以通过在忆阻交叉开关阵列上执行的内存计算 (IMC) 范例轻松实现。在新兴的忆阻设备中,自旋轨道扭矩磁随机存取存储器 (SOT-MRAM) 提供了具有更高导通电阻的可能性,从而可以降低读取电流,因为所有交叉开关阵列都是并行读取的。这有助于进一步降低能耗,为更大的交叉开关设计铺平道路。本研究提出了一种基于 SOT-MRAM 的交叉开关架构,能耗极低;我们研究了工艺变异性对突触权重的影响,并对整个交叉开关阵列进行了蒙特卡罗模拟,以评估错误率。模拟结果表明,与其他忆阻解决方案相比,此实现的能耗较低,每次读取操作的能耗为 65.89 fJ。该设计对工艺变化也具有很强的鲁棒性,读取误差极低,最高可达 10%。
近年来,电阻式存储器已成为电子领域的一项关键进步,在能源效率、可扩展性和非易失性方面具有众多优势 [1]。这些存储器以其独特的电阻开关行为为特征,非常适合各种应用,从高密度数据存储到神经形态计算 [2]。它们与先进的半导体工艺的兼容性进一步增强了它们的潜力,使其能够无缝集成到现代电子电路中 [3]。电阻式存储器的一个特别有前途的途径在于将其集成在半导体制造的后端 (BEOL) 阶段 [4]。BEOL 集成涉及晶体管制造后发生的工艺,主要侧重于创建电气连接这些晶体管的互连。在此阶段集成电阻式存储器可实现紧凑、高效和高性能的架构,这对于数据存储和处理共置的内存计算应用至关重要 [5]。本文研究了使用化学机械抛光 (CMP) 工艺将基于 TiO x 的电阻式存储器集成到无源交叉阵列结构中的三种方法,重点是确定最佳集成技术。
与人类视觉相比,由图像传感器和处理器组成的传统机器视觉由于图像感测和处理在物理上分离,存在高延迟和大功耗的问题。具有大脑启发视觉感知的神经形态视觉系统为该问题提供了一个有希望的解决方案。在这里,我们提出并演示了一种原型神经形态视觉系统,该系统通过将视网膜传感器与忆阻交叉开关联网。我们使用具有栅极可调光响应的 WSe 2 /h-BN/Al 2 O 3 范德华异质结构来制造视网膜传感器,以紧密模拟人类视网膜同时感测和处理图像的能力。然后,我们将传感器与大规模 Pt/Ta/HfO 2 /Ta 单晶体管单电阻 (1T1R) 忆阻交叉开关联网,该交叉开关的作用类似于人脑中的视觉皮层。实现的神经形态视觉系统可以快速识别字母和跟踪物体,表明在完全模拟状态下具有图像感测、处理和识别的能力。我们的工作表明,这种神经形态视觉系统可能会为未来的视觉感知应用开辟前所未有的机会。
摘要 — 实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态地对神经尖峰进行分类,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟的尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改善。
实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
我们打算证明,我们可以构建专用硬件,使用忆阻器和忆电容将神经网络直接映射到该硬件上,从而提高网络的能源效率。我们将使用以集成电路为重点的模拟程序 (SPICE) 来模拟我们的忆电容和忆阻器。使用此模型,我们将创建一个忆阻和忆电容元件的储存器,并在一系列忆电容与忆阻器比率中评估我们的设计,同时测试储存器结构,包括小世界、交叉开关、随机、分层和幂律实现。我们假设我们的设计将大大提高神经网络的能源效率和性能。
关键词;UTBB 28nm FD-SOI、模拟 SNN、模拟 eNVM、eNVM 集成。2. 简介基于新兴非易失性存储器 (eNVM) 交叉开关的脉冲神经网络 (SNN) 是一种很有前途的内存计算组件,在边缘低功耗人工智能方面表现出卓越的能力。然而,eNVM 突触阵列与 28nm 超薄体和埋氧全耗尽绝缘体上硅 (UTBB-FDSOI) 技术节点的共同集成仍然是一个挑战。在模拟脉冲神经网络 (SNN) 中,输入神经元通过一电阻一晶体管 (1T1R) 突触与输出神经元互连,计算是通过突触权重将电压尖峰转换为电流来完成的 [1]。神经元将尖峰积累到预定义的阈值,然后产生输出尖峰。神经元区分和容纳大量突触和输入脉冲的能力与神经元放电阈值的电压摆幅直接相关。这主要取决于膜电容、突触电荷的净数量和低功率神经元的阈值 [2]。