过去几十年来,可再生能源的增长增加了对具有成本效益的电能存储系统 (ESS) 的需求,该系统将客户需求与能源生产分离开来,从而可以始终为消费者提供可靠的供应 [1、2]。大规模并网存储需要能够承受大量充电/放电循环、具有高能源效率(至少 70%)并且资本成本合理 [3]。氧化还原液流电池 (RFB) 是拟议的替代方案之一,因为它们具有在能量容量和功率方面可以单独扩展的特殊能力。氧化还原电池是一种电化学系统,以流动介质中存在的氧化和还原电活性物质的形式储存能量。氧化还原活性物质包含在电解质中,通常储存在外部罐中。因此,能量容量由溶液体积和电活性材料的浓度决定,而功率输出由电池活性面积和电池数量决定。钒氧化还原液流电池是迄今为止研究最多、商业化使用最多的系统。该系统在两个半电池中使用同种元素的不同氧化态的离子,从而最大限度地减少通过膜扩散引起的电解质浓度变化,这是早期对先驱系统的调查中普遍存在的问题 [4]。尽管在这个研究领域取得了重大进展,全钒 RFB 仍远未达到成本目标 [5]。与储能容量相关的主要成本驱动因素是钒电解质 [6]。替代化学方法已被研究作为可行的低成本解决方案。其中,全铁因储能材料的易得性而脱颖而出 [7]。与全钒 RFB 一样,使用相同的氧化还原活性元素可消除交叉污染问题(尽管仍有待考虑当前的低效率)。然而,沉积和溶解速度很慢,并且作为副反应的氢气释放带来了额外的挑战。氢溴氧化还原液流电池 (H2-Br2RFB) 有望成为一种高功率系统,且电解质成本相当低 [8]。反应物储量丰富,
1。本设备旨在使用完全熟悉设备使用所需技术和说明的医疗专业人员使用。在使用该设备之前,请阅读并遵循产品上标记并包含在本手册中的所有警告和预防性通知和说明。2。请勿修改,也不要打开或尝试为电池充电器或电池提供服务,因为这可能会使保修无效。内部没有可提供用户的零件。卸下封面可能会引入电击危害或其他风险。如果系统故障,请将其退还给服务。3。请勿将物体插入电池充电器中,以便有电击的风险。4。在存在易燃麻醉剂,气体,消毒剂,清洁溶液或任何因电气火花而易于点火的材料的情况下,请勿使用电池充电器。5。电池充电器未发货,不应对其进行消毒。将无菌电池放在电池充电器上会使它们非固定。在消毒之前为电池充电。请勿在无菌场附近使用电池充电器。可能发生交叉污染。6。仅使用固定批准的设备,附件和配件。他们已通过特定的医疗标准进行了测试和认证。使用未经批准的附件可能会导致操作不当,可能会对EMC的性能产生负面影响,并且可能导致不遵守医疗标准。7。避免堆叠设备。8。9。该系统可能会导致无线电干扰,或可能破坏附近设备的操作。可能有必要采取缓解措施,例如重新定位或重新定位电池充电器或屏蔽位置。在RF屏蔽房间附近使用此设备进行磁共振成像。充电器中的保险丝尺寸不正确可能会导致火灾。仅用充电器上标记的时间延迟福音替换或在“ 3.5.1 Hall Lithium Battery Charger(L3000)”部分中列出的“技术规格”部分中列出。不要将电池充电器暴露于水分,在湿区域操作或将液体放在单元上或上方。不要沉浸于电击的风险。注意:从制造商那里收到技术文档,不授权个人对充电器或配件进行维修,调整或更改。
用途:EpiNext™ CUT&RUN Fast Kit 旨在从低输入细胞/染色质中快速富集与蛋白质(组蛋白或转录因子)复合的特定 DNA,并通过下一代测序使用 Illumina 平台或 qPCR 等其他方法识别或绘制体内蛋白质-DNA 相互作用。该试剂盒的创新工作原理、优化的协议和组件允许在最小化非特异性背景水平的情况下捕获目标蛋白质/DNA 复合物。捕获的 DNA 特别适合构建非条形码(单重)和条形码(多重)文库,以更少的偏差和更高的分辨率绘制目标蛋白质-DNA 相互作用区域。输入量:对于细胞,通常,每个反应的量可以是 2 x 10 3 到 2 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 1 x 10 5 ,尽管从 EpiNext™ CUT&RUN Fast Kit 获得的修饰组蛋白测序数据只需 500 个细胞即可获得。对于从细胞或组织中分离的染色质,每个反应的量可以是 0.1 µg 至 5 µg 的染色质。为了获得最佳制备效果,染色质输入量应为 2 µg。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织(预制备的染色质)中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选出的特定细胞等。抗体:抗体应为 ChIP 级,以便识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K27me3)来证明抗体适用于 ChIP。内部对照:此试剂盒中提供了阴性和阳性 ChIP 对照。注意事项:为避免交叉污染,请小心地将样品或溶液移入 PCR 管中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
用途:EpiNext™ CUT&RUN Fast Kit 旨在从低输入细胞/染色质中快速富集与蛋白质(组蛋白或转录因子)复合的特定 DNA,并通过 Illumina 平台的下一代测序或 qPCR 等其他方法识别或绘制体内蛋白质-DNA 相互作用。该试剂盒的创新工作原理、优化的协议和组件允许在最小化非特异性背景水平的情况下捕获目标蛋白质/DNA 复合物。捕获的 DNA 特别适合构建非条形码(单重)和条形码(多重)文库,以更少的偏差和更高的分辨率绘制目标蛋白质-DNA 相互作用区域。输入量:对于细胞,通常,每个反应的量可以是 2 x 10 3 到 2 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 1 x 10 5 ,尽管从 EpiNext™ CUT&RUN Fast Kit 获得的修饰组蛋白测序数据只需 500 个细胞即可获得。对于从细胞或组织中分离的染色质,每个反应的量可以是 0.1 µg 至 5 µg 的染色质。为了获得最佳制备效果,染色质输入量应为 2 µg。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织(预制备的染色质)中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选出的特定细胞等。抗体:抗体应为 ChIP 级,以便识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K27me3)来证明抗体适用于 ChIP。内部对照:此试剂盒中提供了阴性和阳性 ChIP 对照。注意事项:为避免交叉污染,请小心地将样品或溶液移入 PCR 管中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
术语 保管链 (COC) 表格:用于记录样本保管和接收的表格。它通常包含样本收集日期和时间、所需的样本分析、样本保存、过滤状态和可追溯性等信息。 复合样本:在预先选择的时间或地点采集的多个单独等分试样的组合,用于表示被采样介质的综合成分。 联合样本 (n.):与另一个团体或机构在同一地点和时间采集的样本。分析物、瓶子和防腐剂不一定相同,并且不会分割样本。示例用法:“联合样本是在 MW01 地点与 XYZ, Inc. 人员一起采集的。” 联合样本 (v.):与另一个团体或机构在同一地点和时间采集的样本。分析物、瓶子和防腐剂不一定相同,并且不会分割样本。用法示例:“地点 MW01 与 XYZ, Inc. 人员共同采样。” 保管:将样本保持在视线之内、立即占有、上锁或密封在个人控制之下或存储在安全位置。保管可以是个人保管,适用于采样团队的所有成员,或适用于同一家公司的成员。 保管封条或标签:背面有粘性的条带或金属或塑料标签,固定在样本容器或运输容器上,以证明样本没有被篡改。保管封条可以从供应商处获得,也可以在现场使用纸条和透明塑料胶带制作。保管封条上将有加盖封条人员的签名和加盖封条的日期。 重复样本:从同一源位置收集但放置在不同容器中的多个样本。它也可以称为现场重复样本。采集重复水样的方法是,先将原始样品(所有等分试样)装入容器,再将重复样品装入容器。重复样品用于评估取样和分析过程的精确度。设备空白样:从用于采集现场样品的非专用设备净化后的冲洗水中采集的样品。设备空白样可用于检查由于设备净化无效而导致的样品交叉污染。现场空白样:在现场制备的样品,用于评估现场样品被与采集样品无关的来源的场地污染物(例如空气中的灰尘或有机蒸气)污染的可能性。通常仅在怀疑现场(环境)条件造成污染时才采集现场空白样。过滤样品:已通过孔径为 0.45 微米 (μm) 的过滤器的样品。为金属分析采集的过滤样品也称为“溶解样品”。”另请参阅“筛选样本”的定义。
美国国家医学图书馆 (NLM) 提供科学文献的访问权限,但不认可或同意其内容。相反,交叉污染对食品安全构成重大风险,需要有效的清洁和消毒方案,这些方案需要通过表面采样协议进行验证、监控和验证。单独使用视觉评估是无效的,但可以作为监测表面残留污染的综合方法的一部分。微生物和非微生物检测方法在检测表面污染方面的有效性进行了比较。非微生物评估方法(例如 ATP 测试)可有效监测残留的表面污垢,而传统的微生物方法可以指示残留的微生物污染,但不能指示表面污垢。分子微生物方法和生物发光测试的最新进展提供了改进的检测能力。没有单一的理想表面测试方法;采样方法应考虑指导方针、综合策略和趋势分析。清洁对于去除表面的“污垢”和保持各种环境中的清洁至关重要。人类的接受度和消费者行为在确定清洁标准方面起着重要作用。清洁的环境对于预防疾病至关重要,肮脏的环境会促进病原体的传播。在食品行业,充分清洁对于防止交叉污染至关重要,尤其是对于即食食品。然而,人类食物过敏原或食物腐败生物的痕迹也可能带来健康风险并影响产品的保质期,这凸显了有效的清洁实践在保持清洁和安全标准方面的重要性。食品生产场所的清洁:法律和财务要求食品生产场所的环境监测是确保食品质量和安全的一个重要方面。虽然食品加工商可能会进行环境采样,但一些州和国家为执法人员提供了如何有效开展此项活动的指南。适当的清洁不仅对于保持食品卫生至关重要,而且出于财务原因也至关重要。清洁不充分会导致设备故障、效率降低和成本增加。清洁通常是一项立法要求,欧盟在其关于食品卫生的法规 (EC No. 852/2004) 中对此进行了规定。英国零售商协会的全球食品安全标准规定了食品安全的最低标准,包括清洁和清洁程序的要求。该标准强调了评估清洁效果、定义可接受和不可接受的清洁度水平以及记录结果的重要性。不符合这些标准可能会给食品制造商带来重大经济损失。除了财务影响外,清洁不当也会导致食品接触表面微生物的生长。这些微生物对环境压力表现出各种生理和遗传反应,使它们能够在非理想条件下生存。微生物滋生的因素包括它们能够产生应激反应并形成难以去除的生物膜。总体而言,保持食品生产场所清洁是确保食品安全和质量的关键方面。这对于遵守监管要求至关重要,并且可能对食品制造商产生重大的财务影响。监测清洁计划的重要性在于检测微生物、有机残留物或两者,这些物质可能存在于受污染的设备和环境表面上。与细菌、酵母和霉菌不同,病毒是专性细胞内寄生虫,只能在活细胞内生长,但可以在宿主外存活数天或数月,形成潜在的感染源。交叉污染是一个重要的风险因素,与高达 38% 的疫情有关,但其实际影响可能被低估。为了防止交叉污染,必须整合食品安全管理实践,包括场所设计、个人卫生和清洁。研究通过对食品处理活动和疫情病例的观察性研究,表明了预防交叉污染的重要性。案例研究 1 来自一家瑞士三明治工厂,在环境拭子和产品中发现了单核细胞增生李斯特菌,这凸显了需要进行环境监测以识别潜在的污染问题。清洁计划的修订解决了这个问题,强调了此类措施的重要性。案例研究 2 来自一家美国乳制品厂,在产品样本和环境拭子中发现了单核细胞增生李斯特菌,表明受污染的设备如何导致交叉污染。交叉污染是导致新兴病原体患病的关键因素,其中许多病原体的感染剂量较低。交叉污染的严重程度因病原体而异,一些病原体如 STEC 和弯曲杆菌的影响为中度至重度。间接交叉污染涉及一系列复杂的步骤,包括手、设备和表面,这说明需要全面的食品安全管理实践。必须认识到,表面采样和交叉污染不仅限于较潮湿的食品加工环境,而是广泛适用于不同的环境。巧克力、花生酱或干面条等低风险食品与食源性疾病爆发有关(Kornacki,2006 年)。在干燥的食品加工环境中,检测环境表面是否存在沙门氏菌或阪崎克罗诺杆菌以及酵母和霉菌等病原体至关重要(Kornacki,2006 年)。在屠宰场,手部接触表面通常受到严重污染,除非将高风险区域和低风险区域分开,否则将存在交叉污染的风险。这可能导致即食食品受到污染。企业被鼓励采用基于风险的方法来评估交叉污染,但这仍然是风险评估中的致命弱点(Griffith 和 Redmond,2005 年)。有效的清洁管理对于减少交叉污染的机会至关重要,但清洁计划中经常忽略手部接触表面(Griffith 和 Redmond,2005 年)。环境病原体污染食物的可能性约为 70%,其中单核细胞增生李斯特菌尤其令人担忧。楼层图/地图可以帮助评估潜在的交叉污染风险,并且是 BRC(2015 年)等标准所要求的。清洁管理的战略方法包括设计、建造和维护设备和场所,以消除难以清洁的区域,最大限度地减少交叉污染的机会,并确保有效的清洁规程。然而,如果没有合规文化和高级管理层的承诺,单靠规程是不会成功的(Griffith,2014 年)。清洁方法的实施是 BRC 等认证标准的一项关键要求,通常基于标准操作程序 (SOP)。清洁文件通常包括政策声明、时间表、程序、详细说明和记录表。越来越多的软件工具被用于支持该过程。审计员经常要求访问清洁计划、结果和从监控中获得的趋势。清洁方案必须是最新的,并且是记录控制系统的一部分,全面涵盖清洁设备和材料。必须认识到,清洁不能消除所有污垢,这对设备、水等材料有影响。未能正确维护清洁设备会导致交叉污染。一项研究发现,附着在清洁工具上的杆状菌和球菌在基因上与从相关食品中分离出来的杆状菌和球菌相同。清洁程序中的典型阶段包括:1. 预清洁 - 去除松散的食物或污垢、刮擦、吸尘等。2. 主清洁 - 去除更牢固地粘附的食物残渣、油脂或污垢3. 冲洗 - 去除清洁剂和乳化/溶解的污垢和油脂其他阶段可能包括消毒选项,以将残留的表面微生物数量降低到较低或可接受的水平。但是,消毒后是否需要冲洗尚有争议,有些指令允许在不存在可能对食品、人员或设备产生不利影响的残留化学物质的情况下将其作为一种选择。杀菌剂的耐药性是一个问题,但必须与可用水的质量、再污染的风险以及保持干燥加工环境的需要相平衡。在美国,消毒剂已为非冲洗应用设定了限制,并在较高水平使用它们,然后冲洗,可以帮助确保表面计数在可接受的范围内。一些处理器还使用额外的“终端消毒”阶段,例如臭氧或过氧化氢蒸汽,这可以在分解前提供额外的杀灭作用。然而,使用这些方法的决定取决于清洁化学品、水质、产品类型和风险水平等因素。全面的清洁实施方法至关重要,包括结合清洁和消毒方案,这些方案通过功效测试或表面采样进行验证和验证。例行审计也可以提供关于清洁效果的宝贵见解。没有单一的“理想”方法来评估清洁和消毒效果,因为所选方法必须考虑潜在表面污染、要控制的危害和所需的清洁度水平等因素。清洁表面的理想方法应该足够灵敏,能够在湿润和干燥的表面上有效工作,具有良好的可重复性和易用性。它还应该快速、便宜、万无一失,以便进行准确的趋势分析。该过程涉及去除有机残留物,例如食物残渣和过敏原,这有助于减少微生物生长并为消毒表面做好准备。低残留微生物数量对于防止食品污染和变质至关重要。清洁表面上是否存在水分会显著影响交叉污染的预防。表面之间的转移率可能有很大差异,并且会因水分而增加,但必须小心干燥以避免再次污染。存在各种方法来评估清洁和消毒的效果,包括目测评估、微生物拭子和快速非微生物化学检测方法,如 ATP 测试。这些较新的测试通过检测污垢而不是微生物来提供更真实的清洁度评估,提供主动的清洁度管理,并及时提供结果以采取纠正措施。在评估表面清洁度方面,微生物和非微生物方法各有优缺点。非微生物方法主要关注残留的有机表面碎片,但也可以通过 ATP 测试检测微生物污染,ATP 测试可以识别低至 104 CFU/mL 的细菌。然而,这些测试不考虑病毒或细菌孢子。微生物学方法仅提供残留表面生物数量的快照,而不表明表面有机污染的程度。食品环境中的表面微生物计数和 ATP 读数之间不太可能存在直接相关性,可能被认为是巧合,因此不可靠。清洁的有效性不能仅由这些方法确定,因为它们没有考虑产品残留物或不同类型的食品污染等各种因素。例如,ATP 含量高的食物可能微生物数量低,而生食可能 ATP 增加相对较低,但微生物数量增加较多。最近,ATP 技术已与评估酸性磷酸酶(一种在生肉和家禽中发现的酶)联系起来。这种方法涉及使表面拭子反应 2 或 5 分钟,光发射越多表示表面越不干净。本章旨在进一步回顾这些方法,以确保通过综合的表面采样计划保持适当且具有成本效益的清洁实践。人们已经探索在清洁前将染料应用于表面作为检测安全或感官问题的一种手段,尽管其在非食品接触区域的有效性尚不确定。一种简单的方法是将透明胶带贴在表面上,然后可以在移除后在光学显微镜下检查。已经开发了更先进的技术,例如荧光和共聚焦扫描激光显微镜,但对于食品企业的日常使用来说并不实用。另一种方法利用 ATP 生物发光测定来评估表面清洁度。酶-底物复合物荧光素-荧光素酶将与 ATP 相关的化学能转化为光,发射的光量与表面上的 ATP 量成正比,因此与表面的清洁度成正比。该方法以相对光单位 (RLU) 测量光,并需要代表可接受清洁值的基线数据。光度计的功能各不相同,有些型号除了标准检测外还提供一系列其他测试。一些光度计使用光电倍增管,而另一些则使用基于光电二极管的系统。每种方法都有其优点和缺点。光电二极管仪器通常更实惠且更坚固,但可能会影响测试灵敏度。为了缓解这种情况,制造商可以调整其试剂、配置或包装中使用的化学成分。选择光度计时,必须同时考虑仪器性能和测试化学成分(线性、灵敏度、重复性和准确性)。有各种报告和建议可帮助您做出明智的决定。许多较新的型号都配备了趋势分析软件,可以帮助跟踪不同地点和工厂随时间变化的数据。一些制造商通过将测试探针和设施集成到光度计中来提供 pH 和温度测量等附加功能。但是,如果设备出现故障,这些增强功能可能会带来复杂性和潜在问题。最终,仪器与其设计的测试相结合的性能对于确定适用性至关重要。大多数制造商提供校准和正/负控制以确保准确性。分析测试的简化使非技术人员能够使用简单的一体化分析进行测试。然而,这些检测中使用的化学配方在不同供应商之间可能存在很大差异,从而影响保质期和储存要求。ATP 水平会因食品类型和加工方式而有很大波动。高度加工的食品通常含有少量 ATP,而西红柿等新鲜食品的 ATP 浓度可能较高。在消毒过程中使用的清洁剂会影响测试结果,因此在测试前冲洗设备至关重要。不同制造商的仪器灵敏度各不相同,有些制造商的灵敏度高于其他制造商。ATP 测试的理想灵敏度水平仍是一个争论话题,讨论的重点是寻找检测低水平和避免过度灵敏度之间的平衡。清洁度标准因企业内的特定表面和区域而异,例如无菌灌装产品与排水管中的表面和区域。制造商提供了清洁度指南,但通常最好由食品企业自己决定,以指导持续改进工作。一种称为 ATP 生物发光的技术已被开发出来用于测量清洁度,一些制造商已采用这种方法来检测低至 0.1-5 ppm 的过敏原残留物。随着 ATP 生物发光的发展,其他针对各种成分(如蛋白质、糖和 NAD)的化学检测方法已被研究作为快速清洁测试。这些测试通常在几分钟内产生单色最终产品,可以用廉价的样品仪器进行目视评估或记录。这些测试的灵敏度各不相同,因此有些测试比其他测试更适合食品企业。使用快速化学测试时要考虑的因素包括测试的普遍性、灵敏度、成本、结果所需时间、简单性和记录能力。每个食品企业必须根据其具体情况和生产的食品类型选择最合适的测试。蛋白质检测方法在检测高蛋白食品(如家禽或乳制品)方面具有潜力,并且在检测过敏原方面也具有特殊用途,因为许多重要的食品过敏原本质上都是蛋白质。给出文章文本这里使用拭子测试检测食品表面的微生物可以提供有关污染程度和病原体存在的宝贵见解。这些测试可以检测蛋白质残留物,这表明有机污染,灵敏度水平从 1 到 10 µg 不等。产生的颜色强度与污染程度直接相关,尽管结果通常以通过/未通过的形式呈现。另一种广泛使用的测试检测 NAD,这是一种化学残留物,可以衡量有机污染。其他基于拭子的测试可以检测低至 2.5 µmol 的葡萄糖或葡萄糖和乳糖。葡萄糖通常存在于食物残渣中,而乳糖测定对乳制品行业特别有用。然而,这些快速化学检测有局限性,包括灵敏度低于同等的 ATP 检测。阴性结果不能用来排除微生物的存在。微生物表面采样的历史悠久,可以追溯到 20 世纪二三十年代。早期的方法基于擦拭,后来开发了直接琼脂接触法。然而,分子方法在未来可能会变得更加普遍。食品工业中使用的主要微生物学方法包括使用拭子、海绵或抹布从表面回收生物,然后在营养培养基上培养。这些测试可用于估计存在的一般或指示生物的残留数量,从而提供清洁效果的证据。指示生物可以反映表面微生物的质量并指示潜在的风险。病原体检测是一种独特的方法,涉及检测可能对公共健康构成风险的特定病原体,例如单核细胞增生李斯特菌。这种类型的测试需要不同的理念方法,并且通常与其他方法结合使用。在检测病原体时,通常需要检查更大的表面面积,而不仅仅是一小部分。所用的介质可以是固体、液体或半固体,通常用拭子接种。要确定病原体是否存在,必须测试足够大的表面面积。如果要寻找清洁度,则应擦拭特定区域,而如果要寻找病原体,则应测试更大的区域。在微生物检测中,回收效率 (RE) 起着至关重要的作用,并且可能因所用方法、微生物类型和测试表面而异。接触板和浸片等接触方法更易于使用,并且可以提供更好的结果,如两次大规模比较所示,尽管差异并不总是很大。然而,所有培养方法都有其挑战,特别是从培养表面去除生物。为了克服这个问题,人们使用了“冲洗”表面,其中冲洗液被用作微生物的来源。最近,人们尝试使用超声波去除表面微生物,尤其是生物膜中的微生物,这引发了人们对回收数量与产品污染的有效性和重要性的质疑。微生物方法的选择取决于所需的具体信息和当前的情况,拭子法被广泛使用,但也有其局限性和缺点。接触板和浸片比拭子法具有更好的可重复性,但也有其自身的挑战和要求。所需的最低限度的培养设施便携式装置可以测试用螺帽密封的冲洗水,保质期长 桨叶带铰链,更易于在平面上使用 只有运动生物才能覆盖琼脂表面 需要培养和灭菌处理设施 表面可能有琼脂残留 无法估计产生可数菌落的表面种群 存在可存活但不可培养 (VBNC) 细菌的风险 擦拭方法仍然是最古老且广泛用于表面监测 擦拭技术的变化会影响结果 回收率低,特别是在低表面种群密度下 缺乏可靠性、可重复性和再现性 有各种标准方法可用,包括 ISO 18593:2004 关于最佳擦拭方案及其对回收率的影响的基本信息仍然缺乏。回收率可看作是从表面去除微生物、在样品采集过程中释放微生物以及随后生长潜力的函数。实际回收率差异很大,从 0.1% 到 25% 不等,具体取决于所采用的技术。拭子类型、表面类型和微生物类型等因素会极大地影响回收率。微生物一旦附着在表面,尤其是生物膜上,就会变得越来越难以去除。此外,由于微生物滞留在芽纤维内,可重复性和灵敏度较差。改进流程一个方面的技术可能会对另一个方面产生负面影响,需要在不同组件之间进行权衡或妥协。缺乏标准化可能使解释单个环境拭子的结果变得困难,可能会导致对清洁效果产生错误的印象。拭子最适合使用多个测试结果来确定随时间推移的性能趋势。了解回收率的问题有助于改进和控制流程。用于保持等渗条件和减少生理压力的采样溶液可用于在运输过程中保持微生物的活力。选择这些溶液时需要小心,通过提供生长培养基来防止人为夸大计数。一些表面可能仍有残留消毒剂,需要中和剂。理想情况下,拭子应及时处理;然而,这通常是不切实际的。与实时分析相比,低温非冷冻运输可以最大限度地减少差异。在解释结果时,可以识别和考虑与常态有显著偏差的结果。需要考虑时间和润湿剂等因素,并针对特定病原体进行优化。应适当选择预富集培养基,但需要考虑非病原体的过度生长。一些制造商在其润湿溶液中添加表面活性剂,以提高从测试表面的“拾取”,这可以人为地增加菌落计数。由于担心拭子芽无法释放回收的微生物,一家制造商开发了一种新型拭子,这种拭子可以释放更多的微生物,从而实现更好的整体回收。另一种方法是使用真空细菌收集系统,这样无需拭子即可进行更大的表面评估。另一种方法是将独立的“一体化培养基和卫生拭子”放入试管中,以更快的速度获得结果。拭子在测试表面后返回到含有琼脂和指示剂系统的培养管中,使微生物生长并通过颜色变化检测其存在。不干净的表面可以在 12 小时内检测出阳性,具体取决于微生物污染水平。使用非特异性培养基可获得一般需氧菌落计数,而选择性或富集培养基则用于特定病原体或指示剂。指示剂系统基于显色、荧光或生物发光检测原理,可在 18 小时内检测出相关微生物。最近,将培养与生物发光测试相结合,可将严重污染表面的检测时间缩短至 1 小时,轻度污染表面的检测时间缩短至 8 小时。生物发光测试可用于大肠菌群、肠杆菌科、大肠杆菌和李斯特菌,从而可以在进一步生产食品之前迅速采取纠正措施。在 ATP 测定中使用光度计将其功能扩展到了传统的估计表面残留物中 ATP 的方法之外。海绵的工作原理与擦拭类似,即从表面去除微生物,释放它们,然后培养它们进行分析。恢复过程包括用压缩的无菌海绵擦拭测试表面,测试表面可能已预先润湿或需要润湿剂。为了避免污染,通常使用无菌手套握住海绵。接种后,将海绵密封在无菌信封中并运送到实验室,在那里搅拌并计数释放的生物。海绵在放回富集培养基中时,对病原体检测具有更高的灵敏度,并且不受附着在其基质上的微生物的影响。一些海绵的表面积比传统拭子大,因此可以测试更大的表面并施加更大的压力。变化包括法国用于擦拭表面的棍棒海绵和纱布。研究还表明,静电擦拭布的性能优于传统拭子(Lutz 等人,2013 年)。其他直接琼脂接触方法,称为“印刷方法”,涉及将无菌琼脂压在要采样的表面上。琼脂吸收微生物,然后繁殖并形成孵育后可见的菌落。这种方法最适合光滑、平坦的表面,并且琼脂的分散方式有所不同。可以使用各种方法计数微生物,包括接触板和浸片。这些工具还可用于计数食物、水或冲洗水中的液体样本中的生物。最近,已经开发出一种混合平板/浸片,用于测试不规则形状的表面。其他变化包括使用 Petrifilm 代替传统的琼脂平板进行培养。Petrifilm 是涂有营养物质和胶凝剂的薄膜,可以用 1 毫升去离子水重新水化以提供表面计数。还发现一种新型滚筒采样器比传统接触平板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能出现过度生长的非常污染的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确的计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来针对微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专长和高成本设备,使其更适合于爆发调查或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一个生物。培养产生的活细胞很少,而 qPCR 显示出更高的结果,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或Petrifilm 是涂有营养物质和胶凝剂的薄膜,可用 1 mL 去离子水重新水化以提供表面计数。还发现一种新型滚轮采样器比传统接触板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能过度生长的污染严重的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们不能区分活体生物和非感染性核酸,只能表明该生物在某个阶段存在。分子方法需要技术专长和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,其推导方式各不相同,基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些推荐的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或Petrifilm 是涂有营养物质和胶凝剂的薄膜,可用 1 mL 去离子水重新水化以提供表面计数。还发现一种新型滚轮采样器比传统接触板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能过度生长的污染严重的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们不能区分活体生物和非感染性核酸,只能表明该生物在某个阶段存在。分子方法需要技术专长和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,其推导方式各不相同,基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些推荐的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专业知识和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专业知识和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或除了这个标准之外,没有其他清洁度的法律标准。但是,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或除了这个标准之外,没有其他清洁度的法律标准。但是,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或
坏细菌、病毒和寄生虫都是能让人生病的微生物(虫子)。坏微生物被称为病原体。好细菌帮助我们消化食物。腐败细菌分解食物垃圾,一般不会让人生病,除非人们吃了太多。好细菌通过竞争资源来帮助抑制坏细菌。所有细菌都需要资源和适当的生长条件。我们知道如何管理病原体,方法是去除它们的食物来源、管理它们的环境条件、用清洁方法去除它们,并通过加工(例如烹饪)或消毒(例如化学应用)杀死它们。如果病原体环境的 pH 值过酸或过碱,或者环境温度过热或过冷或过干,它们的生长就会减慢或停止。病原体暴露在有利条件下的时间越长,它们的数量就会越多,直到不再有资源可供生长。一些病原体不需要氧气就能生长,而肉毒梭菌只有在缺氧的情况下才能生长并产生毒素。真空包装可以减缓腐败细菌的生长,但会使肉毒梭菌产生毒素(如果存在)。微生物不能移动,因此它们移动的最简单方式是搭便车或通过水(交叉污染)。除非食品经过充分加工以去除或杀死病原体,否则在接触将要食用的植物部分时,使用细菌数量较少的水非常重要。水中的细菌水平是通过检测普通大肠杆菌来测量的,普通大肠杆菌是存在与粪便物质相关的细菌的指标。并非所有普通大肠杆菌菌株都是致病的,但很难专门检测水中的病原体菌株。在收获期间和收获后,使用不含普通大肠杆菌的水非常重要。清洁和维护食品接触表面也很重要。由于细菌非常小,它们可以在缝隙中定居,食物颗粒和水分也会在那里积聚,即使肉眼看不见。经常清洁食品接触表面并保持干燥可以防止细菌定居和繁殖。人类和动物是寄生虫和病毒传播的主要途径,因为人类和动物是它们所需的宿主。病原体可以进入人体并通过体液和粪便传播。这就是为什么避免接触人类和动物的粪便并保持良好的个人卫生很重要,例如经常洗手、保持手套和衣服相对干净、不要处理生病或受伤时其他人会吃的食物以及防止打喷嚏和咳嗽时产生的飞沫溅到食物或食物接触表面上。如果农民出现胃部不适、恶心、便便稀软、发烧、眼睛/皮肤发黄等疾病症状,则不要处理食物或食物接触表面。每个人都必须妥善处理食物。新鲜水果和蔬菜非常健康,但由于它们是在无菌环境之外生长的,因此它们身上会带有微生物,有时甚至会带有致病微生物。清洗农产品可以减少但不能消除微生物。切割农产品会将细菌引入内部组织,而内部组织是细菌生长的理想环境和食物来源。冷藏会减缓细菌生长,但不会阻止细菌生长。这就是为什么如果在 7 天内没有食用,切开的农产品必须扔掉,并尽量减少其在室温下的暴露时间。
微生物世界,也称为病菌或微生物。这些微小的单细胞生物可以是细菌、病毒、真菌,甚至是寄生虫。让我们深入了解这些微观奇迹的一些关键事实。首先,你知道细菌有不同的类型吗?例如,引起疾病的细菌被称为致病细菌,而以死亡物质为生的细菌被称为腐生细菌。还有螺旋菌,如导致梅毒的白纹螺旋体。现在,让我们谈谈细菌的一般情况。你知道它们可以分为不同的形状和大小吗?例如,一些细菌呈球形,而另一些呈螺旋形或棒状。但这些微小的生物到底能做什么?首先,它们可以引起植物和动物的各种疾病。事实上,2000 年,一种通常无害的细菌偶发分枝杆菌导致 100 多名修脚客户感染!你知道吗,有些细菌会利用被称为鞭毛的细小毛发状延伸物来移动?它们就像拥有自己的个人推进系统一样!现在,让我们来谈谈这些微生物是如何繁殖的。你知道有丝分裂是细菌分裂和生长的过程吗?但是当细菌感染我们时会发生什么?那么,你知道它会引起各种症状吗?从发烧到充满脓液的脓肿?如果不及时治疗,一些细菌感染甚至会危及生命。现在,让我们换个话题,谈谈病毒。你知道它们是由遗传物质组成的微小颗粒,周围有一层蛋白质外壳吗?你知道吗,病毒会导致各种疾病,从普通感冒到艾滋病毒/艾滋病?更可怕的是,有些病毒无法治愈,只能控制。但别担心,有办法防止这些微生物对我们造成伤害。你知道吗,避免生病的方法之一是经常洗手?您是否知道,消毒剂的效力太强,不适合日常使用,只能在医院环境中使用?更重要的是,确保您使用的任何消毒剂都经过州卫生部门的批准。总之,微生物可能很小,但在引起疾病方面却威力巨大。所以,让我们控制自己的健康,学习如何避免感染!为了达到医院标准,消毒剂必须杀死假单胞菌、细菌、真菌以及结核病或 HIV/HBV。OSHA 要求在沙龙服务期间,任何与客户接触的工具都必须有效杀死这些微生物。为了有效,超声波浴缸清洁器必须与适当的消毒剂一起使用。使用苯酚消毒时,浸泡 10-15 分钟就足够了。但是,要求医院级消毒的州禁止使用次氯酸钠溶液对器具进行消毒。器具应存放在消毒过的容器中,以保持清洁并防止交叉污染。混合消毒剂时务必遵循制造商的说明,因为不正确的比例可能会导致无效或潜在的有害后果。使用后,应使用消毒液清洗器具,然后再存放。足部水疗需要使用 EPA 注册的杀菌、杀真菌、杀病毒(在某些州是杀结核病)消毒剂。还建议使用放置过夜的 5% 漂白剂溶液进行足部水疗消毒。如果发生血液溢出,必须将棉球或湿巾装入双层袋子中再丢弃。疾病控制和预防中心发布的感染控制指南规定了处理客户接触工具的严格协议,以防止疾病传播。每次服务前后用肥皂正确洗手对于保持清洁的沙龙环境至关重要。
医院中的高风险区域和高触摸表面可能会对患者和员工的安全构成重大风险,但是可下载的医院家政清单可以帮助识别这些领域。标准清单概述了所有清洁任务,并根据既定协议实现了管家职责的有效履行。这导致为患者和员工创造一个消毒的环境,从而减少了传染病的传播。Hosident Housekeeping旨在通过实施高标准的清洁度来维持所有地区的无菌环境。关键实践包括对高风险区域的终末清洁和常规清洁高触摸表面。这些努力阻止了医院获得的感染,并确保医院人员和患者的安全。家政清单在医院中可能特别有用,因为它们可以有效地进行例行清洁,监测终端清洁以及促进一致的清洁质量。有效的家政服务首先根据不同的清洁需求对不同区域进行分类。医院管理人员和管家官员应根据特定地区带来的风险来确定清洁的频率,水平和方法。高风险区域(例如手术室和隔离病房)需要每两个小时一次中间消毒,而其他患者护理区和设施则需要用醛和基于洗涤剂的清洁和醛化合物消毒。必须定期监控和评估这些区域,以确保高标准的清洁度。家政清单指南:1。2。高触摸表面也构成风险,应优先考虑定期清洁。医院管家应根据活动类型和接触频率(例如床扶手和门把手)确定这些表面。开发医院客房清单需要分步方法,从提供基本细节并概述必要的任务和协议开始。任务规格: *定义任务,负责人和完成日期。*包括设施地址,部门,医院名称,管家的名称和单位房间号。进入和退出程序: *检查隔离状态;进行手卫生;穿PPE;放置“湿地板”标志;检查夏普容器;进入时空/清洁垃圾箱。*卸下手套;练习手卫生;补货用品;拖把湿地板;并在出口时卸下“湿地板”签名。3。清洁任务: *病房:擦拭手臂轨道,病人的床脚,丢弃的抹布,带有新抹布的干净床,对高接触表面进行消毒(例如,门把手,灯开关)。4。洗手间清理程序: *清洁镜子;擦拭高触摸区域(例如,门旋钮,水槽);空并擦拭肥皂分配器;斑点墙;改变破布;清洁厕所框架和座椅盖;并从外面对厕所进行消毒。5。观察和建议: *在回合中记录观察和建议的行动。*附加照片或视频作为证据。*签名和日期完成。实际上,据估计,每31例患者中每天都有这样的感染。示例:格式:数字应用频率:每日(住院单元),每周/每月(门诊病房)至关重要的家政任务:干净的高接触表面;补充物资;处理医院浪费的维持清洁医院环境的重要性不能被夸大,特别是考虑到这些情况下与医疗保健相关的感染发生的令人震惊的速度。这个鲜明的现实强调了遵守最高标准的严格家政实践的需求。为了有效地应对这一挑战,医院可以从清洁过程中实施5S方法的原理中受益。这些步骤包括Seiri(Sort),Seiton(设置为序列),Seiso(Shine),Seiketsu(标准化)和Shitsuke(Shitsuke(Sustain)。通过使用AI自定义清单模板,设施可以确保这些实践不仅可以维护,而且可以成为其日常操作中不可或缺的一部分。此外,了解医院内不同地区的特定需求至关重要。在病房中,管家必须使用医院级的消毒剂清洁床的每个部分,包括床垫,床头板和侧栏。这种细节在浴室中同样重要,在浴室里,在上厕所之前,要清洁固定装置和支撑杆。在医疗办公室中,由于共享空间,细菌污染的风险更高。因此,必须将重点放在消毒检查表,家具,灯开关,门把手,肥皂分配器和其他高触摸表面上。这是一个连续的过程,需要关注细节和遵守严格标准。通过遵循这些针对医疗保健的环境清洁指南,医院可以大大降低与感染相关的风险。最终,保持清洁的医院环境不仅需要正确的设备和清洁产品,还需要管家人员的适当知识和培训。消毒地板在疗养院至关重要,在疗养院中,居民削弱了免疫系统,使其更容易受到疾病的影响。正确清洁可减少交叉污染并使用温和的物质,避免刺激性化学物质会触发反应。一种系统的方法考虑了五个关键因素:产品选择,技术实施,表面类型,污染水平和员工培训。适当的清洁程序对于在任何医疗机构中保持健康环境至关重要。这涉及遵循确定的协议,优先考虑清洁度和安全性。首先,应使用正确的产品和设备对所有区域进行彻底清洁和消毒。管家必须在没有捷径的情况下遵守完整的清洁清单,以确保对每个表面进行适当消毒。选择清洁解决方案时,要考虑清洁表面的类型以及产品有效消毒,消毒和清洁的能力至关重要。这可以确保尽管清洁工作,但仍保持清洁而不是弄脏区域。家政人员还必须佩戴个人防护设备(PPE),包括手套,消毒湿巾和保护性眼镜,以防止交叉污染并保护自己免受病原体的侵害,采取必要的预防措施。高点触摸表面应始终在清洁过程中优先考虑。即使个人不了解它,接触表面也会无意间传播微生物,因此适当地解决这些领域以减少疾病的传播至关重要。此外,管家应从最清洁到最肮脏的区域工作,以防止重新建造以前清洁的空间。这涉及从对最干净的部分进行清理,然后再解决最脏的区域,从而在整个设施中保持高标准的清洁度。对于大急流城,密歇根州及其他地区的医疗机构,保持卓越的质量控制对于确保患者的安全和舒适至关重要。公司清洁与设施服务在医疗机构卫生设施卫生方面提供专业知识,提供满足或超出期望的一流清洁标准。立即与他们联系以获取免费报价,并发现他们对保持医疗机构保持清洁和消毒的卓越承诺。
更安全食品的五个关键突出显示了五个关键信息:保持清洁,分离生和煮熟的食物,煮至其完成,以安全的温度存放食物,并使用安全的水和饮水机。这张海报已翻译成87多种语言,以分享谁在全球范围内的食物卫生信息。微生物生长因子可以分为固有的(在食物内部)和外在(食物之外)。控制微生物生长的主要因素是营养,温度,pH,水活动和大气。让我们分开打破。内在因素包括: - 营养:细菌需要营养才能成长,就像所有生物一样。- pH:衡量酸性或碱性食物的量度。较低的pH表示更多的酸性(0-7),较高的pH表示更多的碱性(7-14)。中性pH是7,就像蒸馏水一样。- 水活动:食物中的自由水量。自由水较少的食物持续更长的时间,并支持较慢的微生物生长。减少游离水的示例包括: - 加入盐结合水分子 - 使用糖结合水分子,例如在少量酸(低pH)和大量水的果酱制作食物中称为潜在危险食品(PHFS)。这些食物很容易被微生物宠坏,并从监管机构那里获得额外的检查。外部因素包括: - 温度:我们对控制最大的一个因素。大多数引起疾病的微生物在40°F -140°F之间生长,称为危险区域。- 大气 - 湿度(与大气有关)高温加速细菌,霉菌和酵母的生长,从而降低了保质期并损害安全性。食物通常在低温下使用寿命更长。至关重要的指南是在“危险区域”中存储不超过两个小时的食物。用气体包装的冷藏食品(例如预切沙拉)的升高利用一种大气修饰技术,可以显着延迟变质。包装氛围有三种主要类型:1。有氧运动(常规空气)2。改良的气氛(定制气体混合物)3。真空包装(无氧)没有包装,新鲜食品由于大气中存在氧气而迅速破坏,这促进了有害细菌(如假单胞菌)的生长。改良的大气包装涉及将食物放入塑料袋中,这些塑料袋包含没有氧气的气体。此方法可有效防止导致变质的微生物的生长。真空包装,用于冷藏肉和某些蔬菜产品,涉及去除空气以最大程度地减少氧化并减少变质。一些细菌和酵母对特定食物有偏爱;例如,在牛奶和肉类等潮湿的环境中,细菌和酵母在牛奶和肉类等潮湿的环境中迅速生长,在干燥的物质上壮成长。要确保在家中食品安全,请遵守基本准则: *保持清洁度 *正确存储食物 *彻底 *彻底 *监测温度 *使用清洁水无法遵循这些准则,可能会导致200多种不同的疾病,从腹泻到癌症,根据世界卫生组织(WHO)(WHO)。使用厕所时,请确保保持清洁度。在食用之前将食物彻底加热。在厨房中,必须对所有用于烹饪的表面和设备进行彻底清洁和消毒。将昆虫,害虫和其他动物远离厨房区域和食物。应始终将原始食物和煮熟的食物分开,以避免交叉污染。准备生肉,家禽或海鲜,使用刀具和切割板等单独的工具,然后将它们存放在防止与准备好的食物接触的容器中。彻底烹饪所有肉,家禽,鸡蛋和海鲜,尤其是在使用温度计确保达到70°C时。作为汤和炖菜,请在食用前将它们带到沸点。在安全温度下储存煮熟和易腐食品:在食用前迅速冷藏或在60°C以上的热量低于60°C。切勿将煮熟的食物放出超过2个小时。通过遵循包装说明,可以安全地将冷冻食品安全地放冷冻食物,理想情况下是在冰箱中使用干净的水。处理食物时,使用干净的材料并选择用于安全的新鲜有益健康的成分,例如巴氏灭菌牛奶。如果原始食用,洗净水果和蔬菜并避免过期食品。