分子中含有带负电的氧和氮),因此很容易受到与活性氢(例如,不同化合物的羟基上的氧)结合的亲核中心的攻击,从而主要在氮上形成阴离子 3,4 。然后,活性氢( AH ,现在将这样表示)与带负电的氮结合形成 IEM 封端的衍生物,当上述“不同化合物”( DC )的 AH 基团是醇或胺时,分别具有耐水的氨基甲酸酯或脲键。除了水之外,这种衍生物(包括源自单个 AH 但受阻基团的“封端”IEM 化合物,例如ϵ-己内酰胺或 MEKO)可以成功地与 IEM 可能与之反应的其他含 AH 化合物混合,包括质子溶剂,例如乙醇 2 。如果 DC 包含多个 AH 基团,则 IEM 甲基丙烯酸酯基团的可聚合乙烯基 C=C 双键同样可以引入到每个位置。然后,这种 IEM 封端衍生物将能够参与后续的交联聚合,当将热量和/或紫外线引入反应室 2 时,可诱导交联聚合。本引发剂随后将发生均裂,形成自由基 5 。
本研究探讨了使用激光通信 (lasercom) 卫星间链路获取自主导航的相对位置测量值。激光通信交联链路有可能提供卫星间距离和方位测量值,以便在各种轨道情况下准确导航卫星,包括 GNSS 拒绝、GNSS 受限和深空环境。在低地球轨道 (LEO)、地球静止轨道 (GEO)、高椭圆轨道 (HEO) 和火星轨道星座的示例应用案例中,使用数值模拟将激光通信交联方法与传统定位和导航方法进行比较。在地球轨道上使用激光通信测量会导致 LEO 上的误差为 2 米,GEO 上的误差为 10 米,HEO 上的误差为 50 米,与当前基于 GNSS 的导航误差相当。采用所提导航方法的火星轨道器群定位误差为 10 米,与目前 DSN 导航误差相当(当 DSN 操作可用时),并且优于 DSN 数据间隙期间传播的状态知识。使用卫星间激光通信系统进行轨道测定还可以减少对地面跟踪和导航系统的依赖,从而提高太空任务的自主性。
由于前体材料本质上决定了硬碳的基本结构,因此在分子水平上直接操纵前体有望提高设计硬碳结构时的灵活性,这对于决定最终的微观结构特性以及最终的整体钠存储性能起着关键作用。在本研究中,我们提出了一种新颖的通用策略,利用 P 和 O 双交联将沥青转化为热固性前体,在沥青基碳内产生丰富的微孔。这些微孔是钠离子传输和储存的重要途径和活性结合位点,从而使沥青衍生的硬碳具有 416.1 mAh/g 的显著比容量和 89.7% 的令人印象深刻的初始库仑效率。广泛的研究表明,增加的平台容量和封闭的孔体积之间存在很强的相关性,验证了微孔驱动的钠离子存储机制。我们的研究结果强调了交联在前体改性中的突破性意义,为下一代钠离子电池高性能硬碳阳极的设计和合成铺平了道路。
AEHF 系统由地球同步轨道上的卫星组成,其吞吐量是 1990 年代 Milstar 卫星的 10 倍,用户覆盖范围大幅提高。最后一颗 AEHF 卫星于 2020 年 3 月 26 日发射,是美国太空军的首次发射。AEHF 可在南北极之间提供 24 小时不间断的全球覆盖。AEHF 系统由三个部分组成:空间(卫星)、地面(任务控制和相关通信链路)和终端(用户部分)。各部分将以 75 bps 到大约 8 Mbps 的指定数据速率提供通信。空间段由在轨卫星系统组成,利用交联通信实现完整的卫星间通信。任务控制段控制在轨卫星、监测飞行器健康状况并提供通信系统规划和监测。该段具有很强的生存力,拥有多个控制站。系统上行链路和交联链路将在极高频率范围内运行。终端部分包括所有军种和国际合作伙伴使用的固定和地面移动终端、船舶和潜艇终端以及机载终端。太空系统司令部 (SSC) 负责采购太空和地面部分以及太空部队终端部分。
evonik生产了一系列产品,这些产品几乎可以在纤维增强复合材料的所有组件中找到。我们提供单向磁带,用于夹层约束的核心材料,热塑性和热式树脂矩阵,以及用于矩阵的必需组件,例如交联链,催化剂,催化剂修饰符或处理和处理和处理添加。其中一些产品用于用于玻璃或碳纤维的Sizings,以及用于连接纤维增强复合材料的粘合剂。
CW30334 CI和HW30335 CI包含填充剂,随着时间的推移会定居。因此,建议在使用前仔细化容器的完整内容。在生产设备的存储容器中,应不时搅拌预填充的产品,以避免沉积和不规则计量。为了促进搅拌和去除,将高度填充的组件加热到原始容器中的60-80°C(例如,在烤箱中过夜)。铸造混合物应在1 -5 mbar的真空度下在70-80°C的固定储罐中均质化树脂成分,在50-60°C下保持储罐B的硬化剂组件,真空度为2-5 mbar。确定是否已完成交联,最终属性是最佳的,必须对实际物体进行相关测量或测量玻璃过渡温度。客户制造过程中的不同凝胶和治愈循环可能会导致不同程度的交联,从而导致玻璃过渡温度不同。应注意,需要某些最低固定温度和时间才能达到树脂系统中最高的交联密度。树脂系统CW30334 CI/HW30335 CI的最低固定温度为120-130°C。处理数据混合粘度在60℃ISO3219 MPA.S 3000-5000混合粘度在80℃ISO3219 MPA.S 1200-1800
Borealis 为公用事业和可再生能源应用提供行业领先的中压电力电缆化合物。我们的树木阻燃交联聚乙烯 (TR-XLPE) 绝缘材料 (Borlink™ LE4212) 已在 20 多年的使用历史中证明是可靠的。采用 Borealis 绝缘材料和半导体屏蔽层制造的电缆在北美各地的每家 TR-XLPE 电缆制造商中均有使用,通过公用事业电网和可再生能源为家庭和企业提供可靠的电力输送。
目录/示意图:示意图显示 OcuPair 粘性水凝胶制剂装入最终输送装置并应用于活体兔角膜损伤模型的全层角膜伤口上,然后原位交联形成密封伤口的透明水凝胶绷带。部分图片使用 Servier Medical Art(http://smart.servier.com/)中的图片绘制,根据 Creative Commons Attribution 4.0 Unported License(https://creativecommons.org/licenses/by/4.0/)获得许可。
摘要DNA存储我们的遗传信息,并且在生物学和生物技术应用中无处不在,其中它与从小分子到大型大分子复合物的结合伴侣相互作用。结合通过分子中的机械菌株调节,进而可以改变局部DNA结构。经常以封闭的拓扑形式发生DNA,拓扑和超串联为结合诱导的变形和应变调节结合的相互作用增加了全局约束。在这里,我们提出了一个定量模型,即DNA拓扑引入的全局约束如何调节结合并在拓扑和亲和力之间产生复杂的相互作用。我们专注于荧光介入量,该荧光介导剂放弃DNA并通过荧光检测启用直接定量。使用大量测量结果,我们表明,根据配体浓度和初始拓扑结构,相对于开放拓扑的DNA超螺旋可以增加或减少插入。我们的模型定量地说明了使用psoralen用于紫外线诱导的DNA交联获得的观察结果,该交联经常用于量化体内超螺旋。最后,我们观察到单分子测定中拓扑依赖性的结合,该结合可直接访问结合动力学和DNA超级旋转动力学。我们的结果对DNA的检测和定量以及在细胞环境中DNA结合的调节具有广泛的意义。