电子邮件:murugeshankalai2610@gmail.com摘要高效的交通管理对于确保在高流量城市地区安全安全旅行至关重要。延误是由人口稠密的地区的拥塞造成的,其流动性高和商业人口会直接或间接影响公众的日常生活。该项目着重于实施动态信号控制系统,该系统利用AI驱动的技术根据实时交通密度调整流量信号正时。使用基于YOLO的对象检测和MOG2移动对象检测算法,该系统从CCTV摄像机处理视频供稿来计算车辆密度并动态优化信号流动。通过计算信号处的密度,可以在优化的时间使用时清除拥塞。该系统减轻延误,尤其是在高峰时段,可确保不需要手动干预的情况下更顺畅的城市运输。关键字:动态流量信号控制,对象检测算法 - Yolo(您只看一次),Mog2(高斯的混合物)
高级计算中心(C-DAC)的开发中心邀请了印度公司从C-DAC转移技术(TOT)的“兴趣表达”(EOI),并以非专属的方式制造,市场,出售和部署C-V2X硬件适配器,用于交通信号控制器。通过此EOI,由M/S技术促进中心,CDAC,Thiruvananthapuram邀请了密封的H1 BID,来自涉及的著名公司的Thiruvananthapuram,参与了制造,安装和通过技术转移(TOT)来制造,安装和维护交通信号控制器。以下产品由C-DAC开发,由Tihan(技术创新枢纽)的资金(自动导航中心)开发,可供行业转让技术(TOT),以便为各种客户端项目制造,市场和实施。
摘要 - 智能传统信号控制器,将DQN算法应用于传递光策略优化,通过将TRAF-Fimfimals调整到实时交通状态,可以充分地减少交通拥堵。文献中的大多数命题都认为,检测到十字路口的所有车辆都是不现实的情况。最近,新的无线通信技术已通过基础设施对连接的车辆进行了成本范围的检测。只有当前配备的总量的一小部分,可以在低检测率下执行的方法。在本文中,我们提出了一个深钢筋Q学习模型,以优化孤立的交叉点,在具有连接车辆的部分可观察到的环境中。首先,我们在RL框架中介绍了新颖的DQN模型。我们为部分可观察到的环境引入了新的状态表示形式,并为传播信号控制提供了新的奖励功能,并提供网络体系结构和调整的超参数。第二,我们以两个步骤在多种情况下在数值模拟中评估模型的性能。首先完全检测到现有的驱动控制器,然后部分分解,并与互联车辆比例的损失估计值进行部分分解。最后,从获得的结果中,我们定义了可接受和最佳性能水平的检测率。该模型的源代码实现可在以下网址获得:https://github.com/romainducrocq/dqn-itscwpd
1,学生1计算机工程文凭1 JSPM的Rajarshi Shahu工程学院,理工学院,浦那,印度摘要:由于道路上的车辆越来越多,交通拥堵在国内和国际上都是典型的事件。由于重要的交叉点,由于常规的交通瓶颈而损失了很多小时。这使得需要有效的交通控制系统。随着城市汽车数量的增加,最持久的问题之一是交通管理。交通拥堵不仅增加了压力水平,并对我们的日常生活造成了更严重的破坏,而且还通过提高碳排放对环境产生了不利影响。日益增长的人口正在导致大城市面临严重的问题和日常运输相关的活动的重大延误。定期评估交通密度并采取相关操作需要有效的交通管理系统。尽管不同的车辆类型有自己的车道,但交通信号点的通勤等待时间并没有减少。为了在当前系统中解决此问题,建议的方法使用人工智能从信号中收集实时图像。为了有效的交通拥堵管理,此方法使用Yolov8图像处理方法计算交通密度。Yolov8算法以更高的精度检测几辆车辆。智能监控技术通过使用信号转换算法来协调时间分配并减少信号交叉点的交通拥堵来减少车辆的等待时间。因此,我们将付诸实践一个智能流量控制系统,该系统基于使用实时视频处理技术来评估交通密度。索引术语 - 信号切换算法,Yolov8,人工智能和交通灯系统
本文介绍了一个综合数据集的开发,该数据集捕获了自动驾驶汽车(AV)和交通控制设备之间的相互作用,特别是交通信号灯和停车标志。源自Waymo Motion数据集,我们的工作通过提供有关AVS如何导航这些流量控制设备的现实轨迹数据来解决现有文献中的关键差距。我们提出了一种从Waymo Motion数据集中识别和提取相关交互轨迹数据的方法,该数据集并入了37,000多个实例,并带有交通信号灯和44,000个带有停车标志的实例。我们的方法包括定义规则以识别各种相互作用类型,提取轨迹数据,并应用基于小波的DeNoising方法来平滑加速度和速度概况并消除异常值,从而提高轨迹质量。质量评估指标表明,在所有相互作用类别中,这项研究中获得的轨迹在加速度上具有异常比例,而混蛋轮廓降低到接近零水平。通过公开提供此数据集,我们旨在解决包含带有交通信号灯和标志的AV交互行为的数据集中的当前差距。基于有组织和发布的数据集,我们可以在与交通信号灯和标志互动时对AVS行为有更深入的了解。这将促进对现有运输基础架构和网络的AV集成的研究,从而支持开发更准确的行为模型和仿真工具。
代理商的输入包括在先前时间段记录的车辆计数和平均速度,以及当前交通信号灯计划中阶段之间的绿时间分布。代理从预定义的列表中选择一个交通灯程序,每个程序仅在周期长度和绿色时间分布方面变化。此动作空间设计反映了现实世界中的交集管理约束。奖励功能,对于指导代理商的性能至关重要,使用负累积的等待时间作为反馈。这确保代理人不会优先考虑一种方法,而不是另一种方法。为了训练代理商,我们采用了良好的深入增强学习方法,深Q网络(DQN),并与Epsilon-Greedy Exploration策略结合使用。
为了准备将量子启发式交通控制系统投入实际道路使用,DLR ITS 实验室也在对其进行测试。DLR ITS 实验室提供所有交通技术和技术设备,这些技术和设备也适用于典型的道路交叉口。这些设备尤其包括交通信号控制单元。因此,可以验证和优化量子启发式控制系统与实际交通技术之间的相互作用,以便在测试现场推广。
美国政府 (USG) 支持使用交通灯协议 (TLP) 来促进网络安全社区的信任和协作,并指导正确处理私营部门、个人研究人员和联邦部门和机构之间共享的威胁情报和其他网络安全数据。TLP 标准是一种标记系统,用于指定数据、文档或其他通信的信息处理权限。世界各地的组织和个人都依赖 TLP 来确保接收潜在的敏感或专有网络安全信息,并且不会进一步传播,除非以发送者指示的方式。在与现行法律或政策不冲突的情况下,USG 会遵循个人、公司或其他任何组织自愿共享的网络安全信息的 TLP 标记。我们遵守这些标记,因为对数据处理的信任是与合作伙伴合作的关键组成部分。事件响应和安全团队论坛 (FIRST) 是 TLP 标准和指导的权威全球领导者,国土安全部的网络安全和基础设施安全局 (CISA) 是管理 TLP 的 FIRST 特别兴趣小组的联合主席。虽然不具有法律约束力,但 TLP 是一种全球接受和实践的传达数据传播期望的方法。通过 CISA,美国政府将继续在 TLP 的使用方面发挥领导作用。
隐身光学对抗性示例攻击,利用了凸轮的滚动快门效果,以欺骗自动驾驶汽车中的交通标志识别。互补的金属氧化物半导体(CMOS)传感器在汽车摄像机中广泛采用[1,2]。他们通常从上到下透露并读出像素值。但是,CMOS摄像机表现出滚动快门效果(RSE)[4]。具体来说,当CMOS传感器的每一行暴露在略有不同的时间时,输入光的快速变化会通过扫描线的各种颜色阴影引起图像失真。重新研究[6-8]已经显示了RSE的安全性含义,即攻击者可以控制输入光,以在捕获的图像上创建彩色条纹,以误导计算机视觉解释。然而,尽管以前的研究已经在受控环境中实现了单帧的基本rse,但它们无法通过一系列框架实现稳定的攻击结果[5]。GhostStripe旨在实现稳定的攻击结果,从而在自主驾驶环境中更清晰的安全含义。首先,它在交通标志附近部署LED,将受控的闪烁光投射到标志上。由于闪烁的频率超过了人眼的感知极限,因此它仍然是看不见的,使LED显得良性。同时,由摄像机误导了交通标志识别的RSE引起的彩色条纹。没有这种稳定性,异常检测器可能会触发故障机制,从而确定攻击的有效性。1。第二,为了误导自主驾驶计划以在不知不觉中进行错误的决定,交通符号识别结果应该是错误的,并且在足够的连续框架之间相同。随着车辆的移动,摄像机视野中包含标志(FOV)变化的签名的位置和大小变化,需要攻击才能适应摄像机操作和车辆运动,以稳定地覆盖条纹,如图所示。为了实现这一目标,GhostStripe根据受害者的实时感知结果来控制LED闪烁
h) 承包商必须确保交通信号基础设施与架空和地下电缆(包括与运输相关的配电电缆)之间的间隙符合 OTR 和技术要求的要求。如果设计无法满足最低间隙要求,承包商必须获得 OTR 的书面批准才能使用不合规的间隙,这些间隙必须作为交通信号设计报告的一部分提交。