1。背景气候变化是由于全球温度升高引起的温室效应引起的,对古吉拉特邦面临重大挑战。该地区经历了许多与气候相关的影响,包括平均温度的迅速升高,云覆盖率和降水模式的改变,极端气候条件,海洋温度上升和海平面。这些气候变化涉及在整个州,尤其是在沿海地区施加持续的压力,加剧了现有的脆弱性,并需要采取紧迫的行动以整合适应措施和缓解策略。鉴于居住在海岸线附近的大量人口,尤其是古吉拉特邦(Gujarat),因此需要积极适应以应对气候变化影响的需求是当时的最大需求。许多人认为气候变化是21世纪的首要挑战之一,强调了负责监测此类地区的政府机构迅速采取行动的重要性。将气候适应性纳入沿海管理实践对于减轻气候变化的影响并维护古吉拉特邦的社区和生态系统的福祉至关重要。极端天气对古吉拉特邦古吉拉特邦(Gujarat Gujarat)的影响,其海岸线延伸1,663公里,在40个沿海talukas的990万居民所在地,拥有印度最长的海岸线(人口普查,2011年)。气候变化引起的温度变化预计会加剧,世界银行预计到2050年,古吉拉特邦26个地区的19个地区中,世界银行的温度升高为2-2.5°C,使他们的气候变化热点。该地区对海平面上升,旋风,盐水入侵的敏感性以及鱼产卵模式的转移预示着未来的未来迁移和由于气候变化而引起的社区流离失所,如《联合国世界移民报告》(2020年)所强调。古吉拉特邦的主要气候变化危害包括温度,降水和海平面的极端,每种都会对基础设施,人口人群,各种经济部门和农业产生各种影响。农业与劳动人口的50%吸引了9.5%的农业,对美国的GDP贡献了9.5%,面临着脆弱性的增强,热应激和草地减少了可能减少牲畜和畜牧业的产量,影响该地区的2690万牲畜人口。此外,对于民众日常需求的很大一部分,森林通道仍然至关重要。古吉拉特邦的独特生态系统,尤其是在环境脆弱的库奇奇和索拉什特拉地区,面临着气候变化,荒漠化和栖息地丧失的风险,强调迫切需要全面适应和缓解策略。
图 1-1 西部群岛基础设施位置 12 图 1-2 西部群岛设施布局 13 图 2-1 西部群岛(巴拉岛和哈里斯岛)油田布局 23 图 2-2 环境影响评估流程 26 图 3-1 沙洲结构布置 33 图 3-2 系泊桩和锚链布置 34 图 3-3 捆包内部布置 43 图 3-4 项目进度表 47 图 3-5 废物层次结构 51 图 3-6 西部群岛基础设施材料库存估算饼图 54 图 4-1 西部群岛区域内的调查工作 57 图 4-2 海豹在海上的存在情况(Russell 等人,2017 年;Carter 和 Russell,2020 年) 65 图 4-3 保护区相对于西部群岛 FPSO 的位置 68 图 4-4 西部群岛区域的平均捕捞价值 71 图 4-5 平均捕捞努力西部群岛地区的捕捞强度 72 图 4-6 PL3186 上的捕捞力度、捕捞强度以及与渔船相关的 AIS 轨迹 73 图 4-7 按渔具类型划分的捕捞强度 74 图 4-8 西部群岛开发项目相对于其他海上用户的地理位置 76 表 1-1 退役计划摘要 14 表 1-2 项目进度表 15 表 1-3 环境和社会敏感性 15 表 2-1 退役计划摘要 25 表 3-1 海底设施和稳定功能信息 27 表 3-2 管道/出油管/脐带缆信息 35 表 3-3 海底管道保护和稳定功能 44 表 3-4 废物流管理过程 52 表 3-5 西部群岛基础设施细分 53岩石) 53 表 4-1 全年 ICES 矩形 51F0 中的鱼类育苗和产卵情况(Coull 等人,1998;Ellis 等人,2012) 63 表 4-2 区块 210/24 和 201/25 的 SOSI(Webb 等人,2016) 67 表 4-3 2016 年至 2021 年 ICES 矩形 51F0 中的上岸重量和价值(苏格兰政府,2022) 70 表 4-4 2016 年至 2021 年 ICES 矩形 51F0 的捕捞努力量(捕捞天数)(苏格兰政府,2022) 70 表 4-5 西部群岛 FPSO 50 公里范围内的水面资产 75 表 5-1 影响识别 81 表 5-2 GWP (100 年期)相关温室气体(Te CO2e;IPCC,2021 年)88
Lorazepam和氯丙嗪对Budgerigars(Melopsittacus undulatus)食物摄入的影响Amir Safi 1,Hossein Hosseini 1 *,Hadi Haghbin Nazarpak 2抽象的厌食症是一种非特异性迹象,具有多个病理学。缺乏营养会导致死亡风险增加。食欲刺激药物可以在控制厌食鸟类中起主要作用。在Budgerigars中,劳拉西m的剂量为1 mg/kg,可暂时增强饥饿感,并提供持续三个小时的镇静作用。低剂量的Lorazepam可能是一种更好的食欲刺激剂,并且镇静剂比其他剂量的药物较少,但目前尚无有关它的信息。氯丙嗪是可能导致人类体重增加的抗精神病药。到目前为止,尚无抗精神病药作为食欲刺激的信息。在一项盲目的临床试验中,三十个成人健康的芽孢杆菌在肌内注射氯丙嗪(0.1mg/kg)或Lorazepam(0.5mg/kg,1mg/kg,2mg/kg)的作用与安慰剂治疗(1ml/kg)的治疗方法是.ABNOSTARNONT COPTION。降低剂量的劳拉西m(0.5mg/kg)在Budgerigar中增加了更多的食物摄入量与Lorazepam(1mg/kg,2mg/kg)。Lorazepam(2mg/kg)在Budgerigar的食欲无效。与安慰剂和其他治疗组相比,服用氯丙嗪的小组消耗了更多的食物。劳拉西m组在治疗后两个小时表现出嗜睡的证据,而氯丙嗪和安慰剂组没有镇静迹象。关键字:食欲,劳拉西m,氯丙嗪,食物摄入量,Budgerigar简介厌食症是一个非特定的临床标志。这可能是正常的行为(例如,在产卵之前)或疾病的结果。异常影响胃肠道,肝脏,肾脏,生殖道或全身性疾病可能引起严重病人的营养不良[1]营养不良[1]导致肌肉分解,蛋白质缺乏症,蛋白质缺乏症以及脓毒症和机构功能受损的风险[2,3]。在禽类中,饲喂饲料是为厌食症鸟类准备营养所需的一种方法。[4]。如果饲喂喂食不正确地执行,请增加对口咽,意外气管堵嘴(抽吸肺炎)的机械损害风险,将配方从农作物恢复到口腔的风险[5]。此外,口腔饲料所提供的饲料需要手工镇静或利用动物,如果不习惯,它们都可能导致动物压力。[6]。为了治疗厌食症患者并改善其营养状况,同时也有助于从伤害中康复,食欲刺激至关重要[7]。在哺乳动物和鸟类中发现了40多个神经递质作为调节食品摄入量。5-羟色胺,γ-氨基丁酸乙酰胆碱,肾上腺素,去甲肾上腺素,组胺,谷氨酰胺和甘氨酸已被认为是
长期以来,我们一直通过动物模型进行推断,以更好地了解我们自己的生物学和健康状况。 在这些模型中,两栖动物,尤其是非洲爪蟾,已成为生物学发现的强大源泉,为胚胎学、细胞生物学、遗传学、生理学、毒理学、进化、生态学和疾病的基本过程提供了惊人的见解。 事实上,对两栖动物的研究一直在开辟新的发现领域,这一事实反映在众多诺贝尔生理学或医学奖的贡献中,从因发现毛细血管运动调节机制而获得的奥古斯特奖(Lindstedt,2014)开始,最近的是 John Gurdon 于 2012 年因将成熟细胞重编程为多能性而获得的奖项(Krogh,1919;Gurdon 等人,1958;Gurdon 和 Hopwood,2000;Burggren 和 Warburton,2007;Blum 和 Ott,2018)。在过去的 70 年里,非洲爪蟾已经成为主要的两栖动物模型和全球使用最广泛的模型系统之一,对生物学研究产生了巨大的影响。非洲爪蟾原产于南非和中非,最初在 20 世纪 30 年代和 40 年代传入欧洲和北美的实验室,成为当时领先的妊娠试验;注射一次含有促性腺激素的人尿足以在数小时内诱发产卵( Gurdon 和 Hopwood,2000 年)。然而,这种通过简单的激素注射就能全年按需产生数千个卵子和体外发育胚胎的能力,使得非洲爪蟾比其他可用的实验模型具有明显的优势。再加上它的卵母细胞和胚胎很大,非常适合生化、细胞生物学和胚胎学操作,易于进行基因组操作,与人类进化相对接近,维护成本低,生命周期短,这些都使非洲爪蟾成为一种非常有价值的模型。在过去的二十年中,二倍体物种 X.tropicalis 的建立作为实验室模型增加了额外的强大遗传工具(Grainger,2012;Tandon 等人,2017)。X.laevis 和 X.tropicalis 共同使我们能够快速研究体内和体外的基本生物学过程。这使得 Xenopus 成为基因组时代的理想系统,我们需要适合测试人类疾病基因功能的有效模型。本研究主题的目的是强调 Xenopus 作为研究人类发育、疾病和病理的模型系统的出色多功能性和实用性。它包括 18 篇主要研究和评论文章,探讨了各种主题,包括发育、再生、癌症、生物缩放和人类疾病建模,并概述了可用于支持 Xenopus 研究的广泛资源。我们希望它将成为既有经验的 Xenopus 研究人员的资源,以及寻找适合其研究的模型系统和方法的 Xenopus 新手。
Interceptor® G2 Interceptor® G2 (IG2) 是巴斯夫开发的第二代 LLIN,结合了氯虫腈和高效氯氰菊酯,用于控制抗药性蚊子。这种新型媒介控制作用模式利用蚊子自身的酶系统,并且不会对其他杀虫剂产生交叉抗性。与拟除虫菊酯不同,氯虫腈的作用目标位点不是昆虫神经系统。相反,氯虫腈在细胞水平上被 P450 酶代谢后,通过解开线粒体内的氧化磷酸化来破坏呼吸途径和质子梯度。IG2 网络具有 WHO 预认证列表。此前,第 20 届 WHOPES 工作组对该蚊帐进行了评估并提出了临时建议。已发表使用 IG2 蚊帐的实验性小屋试验:氯虫腈混合蚊帐 Interceptor® G2 对西非的抗药性蚊子表现出高效性和耐洗性。Interceptor® G2 是一种新型长效杀虫蚊帐,对科特迪瓦野生的拟除虫菊酯抗药性冈比亚按蚊的功效:半田间试验。哪种干预措施更有利于疟疾媒介控制:杀虫剂混合物长效杀虫蚊帐还是标准拟除虫菊酯蚊帐结合室内滞留喷洒?评估 Interceptor® G2(一种涂有氯虫腈和高效氯氰菊酯混合物的长效杀虫剂蚊帐)对布基纳法索的抗拟除虫菊酯冈比亚按蚊 s.l. 的有效性。总体而言,小屋试验结果表明,与标准高效氯氰菊酯蚊帐相比,IG2 蚊帐对抗拟除虫菊酯蚊子的有效性和耐洗性更高。Royal Guard ® Royal Guard® 是由疾病控制技术公司开发的一种 ITN,通过传统的蚊子击倒和死亡的个人保护以及降低在接触产品拟除虫菊酯活性成分后存活下来的任何蚊子的繁殖力来提供媒介控制。昆虫生长调节剂吡丙醚的预期益处是降低成年雌蚊的繁殖力,从而通过抑制产卵、幼虫蛹转化和功能性年轻成年蚊子的出现,总体减少媒介种群。Royal Guard 蚊帐已通过 WHO 预审。坦桑尼亚和贝宁已使用 Royal Guard 进行了小屋试验,与参考 DuraNet 相比,其性能相同或更优异。Royal Guard 显著减少了暴露在蚊帐中的野生自由飞行抗除虫菊酯血液蚊子的后代,从而证明了其优于 Duranet。目前,这两项试验均未发表。但是,有一项流行病学试验使用含有除虫菊酯和吡丙醚的 ITN 进行。虽然使用的是 Olyset Duo 蚊帐,但它原则上表明,含有吡丙醚的蚊帐在对抗临床疟疾方面可能比标准除虫菊酯蚊帐产生额外的影响。
相关规划历史没有相关的现场历史记录主要计划注意事项i。对环境的影响 - 该提案涉及到定义的主河的床和河岸的工作,因此该计划的环境影响是关键的材料考虑。该计划的主要目标是提高河流处理洪水的能力,同时也提高其生态价值。该计划的主要工程运营涉及河岸的重建,并创建浅湿地刮擦,这些泥土刮擦在洪水时期与主要河道相互联系。河岸的重建涉及扩大河道,同时降低了毗邻的河岸水平,从而增加了河道的横截面区域,从而使洪水的能力更大。反过来,这将降低场地上游的洪水风险。浅湿地刮擦也将充当洪水的水库,并进一步改善河流容纳洪水的能力。最大程度地减少,适应和缓解气候变化的影响是当地共同发展计划的关键主题之一。该方案将对这个主题产生积极的贡献。生物多样性和生态学 - 如上所述,该计划的另一个主要目标是改善河流水生和河岸栖息地的生态价值。在河道本身中,将安装许多功能,包括巨石,流动器和小型水坝。上述措施将带来所需的净收益,并受到理事会生态的欢迎。这些特征将创建各种栖息地,例如更深的游泳池和浅滩,同时还会产生更快的流动区域,这些区域将自我清洁砾石床,从而恢复重要的鳟鱼产卵栖息地。浅湿地刮擦将为寄居水提供季节性区域,这将为两栖动物和鸟类提供重要的栖息地。除上述外,还将种植许多湿地树种,以进一步增加该地区的生物多样性价值。根据《政策AMG 5》和《环境法》(2016年)的理事会义务,预计所有提案都证明了生物多样性的净收益。威尔士规划政策(PPW)第6章中的最新建议是采用逐步的方法来维护和增强生物多样性,建立弹性的生态网络并为生物多样性带来净收益。首要任务是避免以最广泛的意义和生态系统功能损害生物多样性。如果可能存在有害的环境影响,则需要确保计划机构的任何合理的替代站点(包括替代选址和设计选择)会导致损害较小,没有全面考虑损害或福利。申请提交得到了绿色基础设施声明的支持,该声明由地方当局生态官评估。该声明被认为是令人满意的,并与应用程序的规模相称。对该地点的调查发现,该地点存在入侵物种,而代理商确认将在Penhesgyn废物回收中心以安全的方式处理。在现场检查期间,观察到工作已经在现场开始,即将完成。代理商已确认以控制的安全方式处置了入侵物种。结论该提案不会对当地的环境,生物多样性和生态学产生不利影响,并符合当前的政策。
摘要 2020 年 6 月 3 日,阿卜杜拉二世国王下令将现有的亚喀巴海洋公园 (AMP) 宣布为新的亚喀巴海洋保护区 (AMR)。基于此,亚喀巴经济特区管理局 (ASEZA) 已启动宣布该地点的积极程序,该程序是在皇家哈希姆法院、环境部 (MoE) 和为此目的而设立的指导委员会的监督下进行的。基于此,委员会作出正式决定38 (2020) 宣布 AMR。随后,AMP 被纳入约旦国家保护区网络 (JNPA),约旦内阁于 2020 年 12 月宣布该地点为约旦第一个海洋保护区。因此,需要制定定制的管理计划 (MP) 来支持 AMR 的政策实施。预计 MP 将推动 AMR 作为 JNPA 网络的一部分的努力,为更广泛地区的海洋保护潜力做出积极贡献,为保护该地区的主要海洋和陆地动物多样性做出贡献,这些动物至少在其栖息地的很大一部分中被认为是珊瑚礁物种的最佳代表。亚喀巴海洋保护区管理计划 (AMRMP 2022-2026) 是一种创新的管理工具,巩固了亚喀巴作为社会生态系统的认知,成功的保护需要对保护区和亚喀巴人口稠密区进行综合管理。这包括承认相关生态系统及其生物多样性产生服务的能力,并促进恢复那些主要因人为原因(入侵物种、栖息地退化和破碎化等)而改变的组成部分,以确保人类的可持续存在和生活质量或美好生活。从区域角度来看,亚喀巴湾是广阔的红海内一个单独的生物地理区的一部分,具有全球意义,因为它拥有西印度太平洋最北纬度的珊瑚礁。亚喀巴珊瑚礁也位于红海生物地理区内,该区域因其独特的海洋生物多样性而被世界自然基金会 (WWF) 指定为“全球 200 个生态区域”。AMR 因其物种数量众多、栖息地多样、特有性高和地处偏远而独特。它位于西北印度洋-太平洋生物地理区,目前拥有世界遗产。为此,AMR(约 2.8 平方公里)代表着一个独特而优秀的海洋生态系统,它维持着完整的生态设置和相互作用的生物过程,需要长期的保护支持才能实现其独特的多样性和特有性。它涵盖了浅水栖息地和礁石形成以及通过自然交换进行生态相互作用的深海区域。海草床和沙滩的出现调节了这些珊瑚礁群的营养物和沉积物输入。此类栖息地包含大量特有物种和多样化的栖息地,其中有大量全球重要和濒危物种,包括鲨鱼、海豚、苏眉鱼、石斑鱼和海龟。AMR 对更广泛的区域至关重要,因为它被认为是重要的幼虫出口区,也是主要渔业物种的重要产卵地。AMR 边界还涵盖各种鱼类和珊瑚群落,这些群落通常相隔数百公里。至关重要的是,这种广泛完整的海洋生态系统已证明珊瑚礁对珊瑚白化具有恢复力。它还被国际公认为留鸟和候鸟的重要鸟区 (IBA)。
经济分析A.宏观经济和部门上下文1。基里巴蒂(Kiribati)是世界上最偏远的国家之一,面临重大的经济挑战。在32个环礁和一个珊瑚岛上,超过115,000人的人口分布在350万平方公里的海洋地区。这种地理状况增加了能源和其他服务的成本,从而限制了私营部门发展的机会。气候变化构成了巨大的威胁,包括易受海平面上升,风暴潮,沿海侵蚀和盐水入侵的脆弱性。此外,较高的海洋表面温度可能会破坏金枪鱼迁移和产卵模式。这可能会影响该国的经济增长,这取决于捕鱼许可的收入。2。南塔拉瓦(South Tarawa)获得电网电力的距离超过72%,但发电的成本很高,因为对发电的进口柴油燃料非常依赖。现有的太阳能装置涵盖了当前28吉瓦小时(GWH)的当前年能源需求的9%。在2025年,酒吧预测住宅,工业,商业和政府客户的全国电力需求将为37.5 GWH。1 3。基里巴蒂的能源部门政策和优先事项由基础设施和可持续能源部管理。对该行业的投资受到2016 - 2036年基里巴蒂愿景和基里巴蒂综合能源路线地图(2017- 2025)的指导,该地图将可再生能源产生目标定为2025年在南塔拉瓦州的36%。B.项目输出4。拟议的项目与基里巴蒂的能源路线图和投资计划一致,并且超出了该目标。该项目将有三个输出:(i)安装4兆瓦(5兆瓦 - 峰[MWP])网格连接的太阳能光伏电厂和13兆瓦的电池储能系统,即现场准备,地面设备,地面安装板,变种板,变种板,变种板,变种板,变种板,变种工厂设施,工厂设施和1年的运营和维护(O)和1年的运营和维护(O); (ii)制定一项性别敏感的能源草案,以增加可再生能源和私营部门参与的部署; (iii)项目执行机构,项目实施机构,基里巴蒂公共事业委员会(PUB)和其他利益相关者的能力建设。5。电池储能系统约占光伏系统和电池储能系统工厂成本的60%(占项目总成本的49%),尽管可能被视为没有产生任何电力,但它可以再增加2.5 MWP(未能使用电池的总发电量的35%)。为此,考虑了整个项目的成本和收益。C.假设和参数6。经济分析是根据亚洲发展银行指南进行的,所有成本和收益均以2020年的价格表示。对项目的经济评估是通过使用国内价格数字进行比较而没有项目的情况进行的。这些费用不包括税收和关税,财务费用和价格意外事件,但包括身体意外情况。该项目的经济成本包括(i)资本成本,包括民用工程以及电气和机械工程; (ii)O&M成本,包括更换折旧设备的费用。假定残差值为零。
钢筋混凝土结构——“通过形状体现力量” HM Pawar O'shell 先生:一般来说,钢筋混凝土结构应始终保持 150 毫米的钢筋间距标准。在本例中,学生们仅凭对力线的理解,就将结构顶部的钢筋间距增加到了 750 毫米。O'shell 没有任何高科技生产系统,而是依靠人类机器人(学生和非熟练工人的手)的想法。从设计概念化到结构施工,再到项目最终完成,整个建造过程在 20 个工作日内完成。印度蒂鲁吉拉帕利 CARE 建筑学院的学生创造了“o'shell”原型,以探索形式与力的关系。该实验项目旨在促进重要的动手体验,同时以直观和有趣的方式建立对基于张力的曲面结构的理解。在导师 balaji rajasekaran (dmac 组) 的指导下,这项工作成为学生程序设计模块的一部分。o'shell 项目是一项现场练习,让学生有机会根据现场参数创建建筑响应。这包括决定结构的方向、基础网格和初始框架。这项实验还让学生有机会看到整个工作,从最初的设计开发到结构的实现。施工过程的第一步是挖掘地面以形成底座梁。此后,学生们一起搭建钢结构。通过利用钢的抗拉性能,该项目采用了非标准/非线性过程,以现场主动弯曲作为设计驱动力,无需任何模板或模板来固定混凝土或引导几何形状。基础框架是使用现场参数得出的,然后根据团队对应力线方法的理解对钢材进行编织和弯曲,以指导概念结构设计。 B] 钢筋混凝土礁石:邦政府已批准该项目。为了提高鱼类产量并为渔民提供生计支持,将在 Thiruvananthapuram 和 Poovar 渔村附近安装 400 块人工鱼礁。这项耗资 3.75 亿卢比的鱼类产量提高计划是耗资 47.5 亿卢比的 Vizhinjam 修复项目的一部分,旨在恢复即将建成的国际深水海港所影响的渔民并向他们提供补偿。整体结构:两百个整体三角形钢筋混凝土 (RCC) 礁石模块将很快被放入 Kollamcode、Paruthiyoor、Valiyathura、Kochuthura、Puthiyathura、Pallom 和 Adimalathura 渔村附近沿海的海域。另外 200 个钢筋水泥礁模块将安装在该地区更南部的 Poovar 渔村海岸附近。总共将建造一个由 400 个礁模块组成的人工集群。人工礁被认为是附着生物的良好栖息地,附着生物是一群微小的浮游生物,是杂食性和草食性鱼类的主要食物来源。预计黄貂鱼、电鳐、龙虾、鲹鱼、鲹鱼和水蚤将到达这些人工礁石以捕食小鱼。除了提高沿海鱼类的整体供应量外,人工礁石群还将振兴水生环境,充当产卵和育苗场,减少侦察捕鱼时间,并为因特大洪水而流离失所的双体船渔民提供生计
雨水盆地合资企业历史雨水盆地合资企业 (RWBJV) 成立于 1992 年,隶属于北美水禽管理计划 (NAWMP),这是一项保护倡议,它认识到需要以区域为基础、自我引导的伙伴关系,重点是栖息地保护。2000 年,RWBJV 管理委员会抓住机会扩大其使命,将其他国家鸟类保护倡议中确定的优先物种包括在内。管理委员会的代表来自美国鱼类和野生动物管理局、内布拉斯加州野生动物和公园委员会、自然资源保护局、农业服务局、内布拉斯加州资源区协会、当地自然资源区、鸭子无限组织、野鸡永存、大自然保护协会和当地土地所有者。自 RWBJV 成立以来,管理委员会就认识到以科学为基础的保护以及与当地土地所有者协调制定保护计划的重要性,这些计划不仅可以提供优质的栖息地,还可以融入这个高度农业化的景观。战略栖息地保护业务模式 2005 年,RWBJV 改进了其栖息地保护方法。最初,RWBJV 合作伙伴专注于“保护交付”:实施实地栖息地项目。然而,随着项目资金变得有限,合资伙伴需要能够描述明确栖息地目标、确定保护优先事项以及描述优先物种对合作项目的生物反应的工具和数据。现在,RWBJV 的保护业务模式整合了战略栖息地保护框架的要素,以促进整个雨水盆地 (RWB) 的湿地保护、恢复和改善活动。RWBJV 对四个 SHC 要素(图 2)和相关子要素的实施如下所述。 生物规划 RWBJV 进行了密集的规划过程,以估计依赖湿地的物种的栖息地需求。RWBJV 的保护规划工作组估计,在春季迁徙期间,有 850 万只水禽使用雨水盆地地区。该工作组开发了一个生物能量模型,结合了水禽使用量估计、饲料选择和营养需求,估计春季迁徙水禽的总能量需求为 156 亿千卡 (kcals)。该模型表明,该地区丰富的废弃谷物可以满足水禽的大部分能量需求;然而,一部分能量(44 亿千卡)需要从天然湿地觅食栖息地提供,因为废弃谷物缺乏关键的氨基酸和必需矿物质,不适合某些物种。许多研究发现,获得足够营养资源的雌性水禽能够成功地继续迁徙并招募幼鸟加入种群,因为它们更早开始筑巢,产卵量更大,如果最初的巢穴丢失,重新筑巢的倾向也更高。中纬度迁徙栖息地(如 RWB)是许多水禽在到达繁殖地之前的最后一个中途停留地;因此,当更多鸟类以更好的身体状况离开 RWB 时,招募会受益。已经收集了数据和研究结果,以量化不同湿地植被群落中可用的能量资源。结果表明,为了完全满足水禽的能量需求,大约 25,000 英亩的优质 RWB 湿地需要在迁徙期间被淹没。