在场地E上的海报会议简短介绍为1分钟,没有问答。海报主持人被要求提交一张摘要幻灯片并提前提交。简短的演示后,海报演示将在地点PS开始。12月8日9:00的海报设置,然后拆除至12月8日13:00。关于演示文稿编号:例如,7AA-1是指第七场地早晨的第一次演讲,在讲座编号前的△标记表示演示奖的演讲。
1人类遗传学系,麦吉尔大学,蒙特利尔,QC H3A 0C7,加拿大2个基因组医学中心,京都大学研究生院,京都大学606-8507,日本3数字技术研究中心,加拿大国家研究委员会,渥太华,渥太华,K1K 4P7,加拿大4P7,Indure prantublorator and Inderipic suplorator and Indiator lip lip lip lip lip lip。渥太华的渥太华,位于加拿大的K1H 8M5,5年生物化学系,微生物学和免疫学系和渥太华系统生物学研究所,渥太华大学,渥太华大学,K1H 8M5,加拿大6 Terrence Donnelly Donnelly Donnelly Center of Cancase ot toronto,MORONTO,MORONTO,MORONTO,MORONTO,MORONTO,MOLONTO,MOLONTO,MOLONTO,MOLONTO,MORENT,MORONT,MOLONT,MORONT,MOLONTO,MORONT,MORONTICT,M5S,M5S,M5S,M5S,M5 of Toronto, Toronto, ON M5S 3E1, Canada 8 Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada 9 Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada 10 Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa,渥太华,在加拿大的K1N 6N5上,相应的作者。数字技术研究中心,国家研究委员会,渥太华蒙特利尔路1200号,加拿大K1K 4P7。电子邮件:Miroslava.cuperlovic-culf@nrc-cnrc.gc.ca(M.C.-C。)和渥太华大学生物化学,微生物学和免疫学系,451 Smyth Rd,Ottawa,Ottawa,Ottawa,Ottawa,K1H 8M5,加拿大。 电子邮件:sbennet@uottawa.ca(S.A.L.B。) †同等贡献。 副编辑:guqiang yu电子邮件:Miroslava.cuperlovic-culf@nrc-cnrc.gc.ca(M.C.-C。)和渥太华大学生物化学,微生物学和免疫学系,451 Smyth Rd,Ottawa,Ottawa,Ottawa,Ottawa,K1H 8M5,加拿大。电子邮件:sbennet@uottawa.ca(S.A.L.B。) †同等贡献。 副编辑:guqiang yu电子邮件:sbennet@uottawa.ca(S.A.L.B。)†同等贡献。副编辑:guqiang yu
■公司简介 公司名称:系统规划研究所株式会社 代表董事:门胁仁志 总公司所在地:东京都涩谷区樱丘町18-6日本会馆 业务内容:以医疗信息、控制与空间、通信与网络、图像处理、AI等领域为中心的软件开发、系统开发、系统集成、咨询、技术开发、产品开发 URL:https://www.isp.co.jp/
(1) R. Gómez-Bombarelli, J.N.魏,D. Duvenaud,J.M.Hernandez-Lobato、B. Sanchez-Lengeling、D. Sheberla、J. Aguilera-Iparraguirre、T.D.希泽尔 R.P.亚当斯和 A.Aspuru-Guzik.,“使用数据驱动的分子连续表示进行自动化学设计”,ACS Central Science,卷。4,没有。2,第268-276,2018 年 2 月。(2) T.Guo, D.J.Lohan 和 J.T.Allisony,“使用变分自动编码器和风格迁移进行拓扑优化的间接设计表示”,AIAA 2018-0804。https://doi.org/10.2514 / 6.2018-0804,2018年。(3) S. Oh、Y. Jung、S. Kim、I. Lee 和 N. Kang,“深度生成设计:拓扑优化与生成模型的集成,”J.机械设计,卷。141,号。11, 111405, 2019.(4) 五十岚一,伊藤桂一,《人工知能(AI)技术と电磁気学を用いた最适设计[I]──トポロジー最适化──,》信学志,卷.105,没有。1. 页2022 年 33-38 日。(5) H. Sasaki 和 H. Igarashi,“深度学习加速拓扑优化”,IEEE Trans。Magn.,卷。55,没有。6,7401305,2019。(6) J. Asanuma、S. Doi 和 H. Igarashi,“通过深度学习进行迁移学习:应用于电动机拓扑优化, ” IEEE Trans.Magn., 卷。56, no.3, 7512404, 2020.(7 ) T. Aoyagi、Y. Otomo、H. Igarashi1、H. Sasaki、Y. Hidaka 和 H. Arita,“使用深度学习进行拓扑优化预测电流相关电机扭矩特性”,将在 COMPUMAG2021 上发表。(8) R.R.Selvaraju、M. Cogswell、A. Das、R. Vedantam、D. Parikh 和 D. Batra,“Grad-CAM:来自深层的视觉解释网络通过基于梯度的定位,” Proc.IEEE Int.Conf.计算机视觉 ( ICCV ),第< div> 618-626,2017 年。(9) H. Sasaki、Y. Hidaka 和 H. Igarashi,“用于电动机设计的可解释深度神经网络”,IEEE Trans。Magn.,卷57,号6,8203504,2021。(10) X.Y.Kou,G.T.Parks,和 S.T.< div> Tana,“功能优化设计
摘要:对淡水虾消化道中降解胞外酶的需氧菌进行了分离。在羧甲基纤维素琼脂平板、淀粉琼脂培养基平板、明胶蛋白胨琼脂培养基平板上分离肠道细菌。在选择性培养基上根据胞外酶对分离的菌株进行定性筛选。根据形态学、生理学和生化特征对菌株进行鉴定,鉴定出芽孢杆菌种。通过使用明胶琼脂培养基、羧甲基纤维素培养基和刚果红CMC培养基以及针对不同酶的淀粉琼脂培养基进行菌落鉴定,分离出芽孢杆菌种。分离物能够水解蛋白质和碳水化合物,表明它们在鱼类营养中的重要性。
宇部兴产集团每年回收利用的资源材料有303万吨。这些资源材料被用作水泥原料和替代能源,相当于东京塔重量的760倍。这些资源材料的回收利用体现了我们为循环型社会做贡献的热情。水泥生产的一个特点是,水泥主原料石灰石的裂解过程(CaCO 3 =CaO+CO 2 )产生的CO 2 排放和实际生产水泥所需的能源消耗产生的排放是无法避免的。但是,为了应对这些排放,宇部兴产将废弃资源回收用于水泥生产,以减少水泥生产过程中产生的CO 2 排放。
微生物电化学反应可用于合成高附加值化学品和固定CO2等。[7–9] 双向电子转移通过直接电子转移、纳米线转移和穿梭转移等多种自适应途径发生,表明电子转移效率是影响微生物电化学活性的关键因素。[2,5,10] 随着外电极可以有效地作为电子受体或供体被发现,人们对细菌与电极之间双向电子交换的深入探索已经在各种生物电化学系统中创造了新技术,例如微生物燃料电池(MFC)、微生物电解电池(MEC)、微生物海水淡化电池(MDC)和微生物电合成(MES))。 [1,11] 利用生物电化学系统,产电细菌可以革命性地从有机废物中产生可再生生物电,合成高价值化学品和生物燃料,或执行许多其他对环境重要的功能,如生物修复、海水淡化和生物传感。特别是,MFC 中细菌细胞外电子转移 (EET) 过程的利用已引起广泛关注,可替代我们已有 100 年历史的能源密集型有氧技术,成为废水处理方法的替代品。[12–14] 虽然许多可再生、碳中性的能源,如风能、太阳能、地热能和核能,已经开始取代化石燃料,以紧急缓解能源危机和全球变暖,但 MFC 可以更有效地产生清洁电力,同时去除废水中的污染物。为了解决这些紧迫的社会问题,人们对MFC进行了大量且持续的研究,主要集中在大规模系统的开发和运行上。[12,15] 扩大MFC的规模对于应对迫在眉睫的能源-气候危机至关重要。尽管过去几十年来MFC取得了长足的发展和性能提升,但其规模化和商业化仍然难以实现。[12–16] 最关键的挑战是其性能极低,且性能不会随着尺寸的增大而成比例提高。[16–19] 许多研究已经探索了通过纳米技术、细菌基因工程和材料创新来提高MFC性能的方法。[13,20,21] 然而,它们能否经济高效且稳健地集成到大规模应用中还值得怀疑。尽管模块化堆叠