参考文献:Oro L,Ciani M,Comitini L(2014)Metschnikowia pulcherrima在酒酵母上的抗菌活性。应用微生物学杂志116:1209-1217。Puyo M,Simonin S,Bach B,Klein G,Alexandre H,Tourdot-MaréchalR(2023)由Metschnikowia pulcherrima在Oenology中生物保护:从现场结果到科学询问。微生物学中的前沿doi:14:1252973。Simonin S,Honoré-Chedozeau C,Monnin L,David-Vaizant V,Bach B,Alexandre H等。(2022)霞多丽葡萄的生物保护:沉降参数的极限和影响。aust。J.葡萄酒res。1-13。doi:10.1155/2022/1489094 Windholtz S,Nioi C,Coulon J,Masneuf-Pomerede I(2023)非糖疗酵母在生物学中生物保护:O 2的评估和对乙酸细菌的评估和影响。国际食品微生物学杂志405:110338。
在过去十年中,肾上腺皮质癌 (ACC) 发病和进展的分子机制定义取得了重大进展。通过对 ACC 肿瘤进行广泛的分析,确定了这种恶性肿瘤的几种遗传和分子驱动因素,从而更好地了解了 ACC 肿瘤的发生。不幸的是,由于缺乏能够概括 ACC 异质性、分子特征、肿瘤微环境和对现有治疗的敏感性的体外和体内临床前模型,新的治疗方案的开发受到了阻碍。最近建立和实施了新的 ACC 细胞系、基因工程小鼠模型、小鼠患者来源的 ACC 异种移植 (PDX) 和新兴的临床前体内模型,为药物发现提供了新的实验可能性。
Axon 利用其成熟的肽基疫苗平台生产了一种新型预防性 COVID-19 疫苗,旨在治疗受感染患者并保护健康个体免受感染。Axon 的疫苗仅含有能够诱导所需 T 细胞和 B 细胞介导的免疫反应的选定表位,以防止病毒刺突 (S) 糖蛋白与其目标人体细胞相互作用,从而阻止病毒进入细胞并扩散。这种方法旨在防止在先前针对 SARS-CoV 的传统疫苗研究中观察到的不良严重副作用。
摘要 — 本文介绍了一种针对具有参数和动态不确定性混合的系统的结构化鲁棒控制设计方法。所提出的方法在分析步骤和综合步骤之间交替进行。在分析步骤中计算参数不确定性的样本,从而产生仅包含动态不确定性的不确定系统阵列。然后在这个不确定模型阵列上合成控制器。此合成步骤本身涉及为每个不确定系统构建 D 尺度和为整个缩放对象集合调整单个控制器之间的交替。控制器调整使用结构化控制设计技术执行。所提出的方法用于设计柔性飞机的颤振抑制控制器。飞机动力学由高保真模型和降阶模型描述。颤振抑制的设计目标是在存在混合不确定性的情况下实现稳健稳定。所提出的结构化设计方法产生了一个单一的、低阶的、线性时不变 (LTI) 控制器,可将颤振速度提高 15%。提供了额外的稳健性分析和高保真模拟来评估控制器性能。
摘要 — 本文介绍了一种针对具有参数和动态不确定性混合的系统的结构化鲁棒控制设计方法。所提出的方法在分析步骤和综合步骤之间交替进行。在分析步骤中计算参数不确定性的样本,从而产生一组仅包含动态不确定性的不确定系统。然后在此不确定模型阵列上合成控制器。此合成步骤本身涉及交替为每个不确定系统构建 D 尺度和为整个缩放对象集合调整单个控制器。控制器调整是使用结构化控制设计技术执行的。所提出的方法用于设计柔性飞机的颤振抑制控制器。飞机动力学由高保真度和降阶模型描述。颤振抑制的设计目标是在存在混合不确定性的情况下实现鲁棒稳定性。所提出的结构化设计方法产生了一个低阶线性时不变 (LTI) 控制器,可将颤振速度提高 15%。提供了额外的鲁棒性分析和高保真模拟来评估控制器性能。
摘要 — 本文介绍了一种针对具有参数和动态不确定性混合的系统的结构化鲁棒控制设计方法。所提出的方法在分析步骤和综合步骤之间交替进行。在分析步骤中计算参数不确定性的样本,从而产生一组仅包含动态不确定性的不确定系统。然后在此不确定模型阵列上合成控制器。此合成步骤本身涉及交替为每个不确定系统构建 D 尺度和为整个缩放对象集合调整单个控制器。控制器调整是使用结构化控制设计技术执行的。所提出的方法用于设计柔性飞机的颤振抑制控制器。飞机动力学由高保真度和降阶模型描述。颤振抑制的设计目标是在存在混合不确定性的情况下实现鲁棒稳定性。所提出的结构化设计方法产生了一个低阶线性时不变 (LTI) 控制器,可将颤振速度提高 15%。提供了额外的鲁棒性分析和高保真模拟来评估控制器性能。
本备忘录旨在解决《资源保护与回收法案》(RCRA)中关于危险废物燃料混合活动监管状况的一系列问题。备忘录主要涉及通常被称为“燃料混合器”的设施,尽管这些设施的废物管理活动通常包括一系列综合废物处理操作,这些操作比燃料混合活动本身更加多样化和复杂。关于《资源保护与回收法案》许可要求和土地处置限制(LDR)要求对这些设施的适用性,已经提出了许多问题。下面提供的指南一般性地讨论了这些问题。但是,由于许多燃料混合操作都很复杂,因此可能存在一些特定于设施的监管问题,最好根据具体情况进行解决。
海报論文发表林韦志杨筑安杨筑安赖欣宜易哲安陈国豪邓珮琳徐培文侯儒君胡瑄耘王乔立苏正宪苏志文黄兆清洪翊芸Wee Beng Lim 陈淯圣郭哲玮林子玮林柏廷宋泓葰柯虹瑩林政宏林奕全张馨呂宗谚林弘杰陈家维蔡奇男陈瑜轩孙德娟林子桓邱景徽陈祺蔡世国谢立伟翁颖信苏柏豪陈韦佑王升钧洪孟君胡家豪陈羽蓁林炜翔胡政嘉胡政嘉林文元许倬宪余滋雅褚祥蕴洪晨玮许嘉峻陈冠玮葉怡伶吴家森慧麗Mintra Phochanamanee 吴宗原
Utilizing a multimodal foundation model for constructing an AI- enabled opportunistic screening framework for the next-generation healthcare system 林嵚副教授( 国防医学院医学系副教授/ 三军总医院数位医疗中心人工智慧实验室主任) Associate Professor, School of Medicine, National Defense Medical Center Director of AI lab, Military Digital Medical Center, Tri-Service General Hospital
“与上述两种方法相比,我们提出的方法有两个主要优势,”帕特奈克说。“首先,我们提出的方法与飞行条件无关,而燃料冷却或冲压空气冷却则取决于飞行条件。燃料提供的冷却量取决于发动机所需的燃料量,并且会随着飞行时间的延长而减少。同样,冲压空气提供的冷却量取决于其温度和流量,而这又取决于飞行条件,”帕特奈克说。