光合作用是驱动植物生长和生产力的基本生物学过程,直接使农作物产量和农业可持续性降低。随着全球人口的不断增长,对粮食产量增加的需求已成为提高农作物的光合作用的关键。本评论全面研究了理解和改善光合作用的最新进展,旨在应对全球粮食安全挑战。我们深入研究了诸如基因工程等创新策略,以优化参与光合作用的关键酶,提高光捕获效率的技术以及操纵碳ϔ偶偶体途径的方法。此外,我们探讨了包括CRISPR-CAS9和合成生物学在内的先进生物技术工具和方法的整合,以重新启动和优化光合作用过程。本文还讨论了将这些科学进步转化为实际农业应用所面临的重大挑战,包括环境变异性,监管障碍和公众接受问题。未来的研究方向,强调了跨学科合作和可持续农业实践的需求。通过综合最新发展并确定关键领域以进行进一步调查,该综述概述了提高光合作用的潜在和挑战,以满足未来的粮食生产需求。
1胃肠道部门,医学与外科和牙科部门的“ Scuola Medica Salernitana”,位于意大利巴罗尼西的萨勒诺大学; 2意大利那不勒斯坎帕尼亚·瓦维特利(Campania Luigi Vanvitelli)心脏病学科学系转化科学系; 3意大利的意大利家庭医学学会,意大利的意大利家庭医学学会合作社Simg Come Griencal医生; 4个初级保健医生,ASL 9意大利Grosseto; 5 Vanvitelli心脏病学部门,意大利那不勒斯Monaldi医院;
5 Suman Ramesh Tulsiani 技术园区-工程学院 摘要:本研究论文重点关注预测可再生能源生产,特别是太阳能和风能,在向可持续能源过渡中发挥着至关重要的作用。准确预测可再生能源产量对于有效融入电网至关重要。在本文中,我们提出了一种基于人工智能的方法,利用天气预报模型来预测可再生能源产量。具体来说,我们采用深度学习技术,包括长短期记忆 (LSTM) 网络,来预测太阳辐照度和风速,这是影响可再生能源发电的关键因素。我们使用各种质量指标来评估我们提出的框架的性能,包括平均绝对误差 (MAE)、均方根误差 (RMSE)、归一化指标 (nMAE、nRMSE) 和判定系数 (R2)。 关键词:可再生能源预测、人工智能、天气预测模型、可持续性。 1. 引言 近年来,由于人们对气候变化的担忧以及减少对有限化石燃料的依赖的需要,全球向可持续能源转型的势头愈演愈烈。在可再生能源选择中,太阳能光伏 (PV) 能源因其丰富的可用性和相对较低的环境影响而成为一种有前途的解决方案。然而,太阳能生产固有的多变性和间歇性对电网稳定性和能源管理构成了重大挑战。因此,准确预测可再生能源生产对于优化其与现有能源系统的整合以及确保可靠高效运行至关重要。人工智能 (AI) 和机器学习 (ML) 技术的最新进展为提高天气预报模型的准确性提供了有希望的途径,从而提高了可再生能源预测的可靠性 [1]。研究人员已经展示了基于 AI 的方法在包括太阳能预测在内的各个领域的潜力。例如,Adeh 等人的研究。 [1] 和 Chandola 等人的研究。 [6] 强调了基于人工智能的模型在预测太阳辐射和能源生产方面的有效性,特别是在多样化的气候条件下。此外,Roy 和 Mitra [2] 强调了优化控制系统以有效整合可再生能源的重要性,进一步强调了对稳健预测方法的需求。本文旨在利用现有研究的见解来开发一种基于人工智能的天气预报模型,该模型专门用于预测可再生能源生产,主要关注太阳能光伏能源。
鉴于汽车行业对快速将新产品推向市场的需求日益增加和竞争日益激烈,生产加速和减速管理已成为新的决定性竞争因素。因此,精心设计的战略已成为成功的关键。对于 Scania Engine Assembly 来说,这一新挑战正在以旧装配线 (DL) 减速和新装配线 (DW) 同时加速的形式进行。这是为了提供新的、更具可持续性的 Super 发动机平台。DL 由基本装配和最终装配 (TMS 线) 组成,其中后者是本论文项目的重点。由于过渡已经开始,因此迫切需要制定一个延伸到完全过渡的生产减速策略。因此,启动了这个项目,以制定一个最佳的生产减速策略,考虑到相互关联的项目和功能,以及经济、效率、人体工程学和质量因素。该项目还旨在建立一个关于战略管理和实施的理想项目进展。考虑到 TMS 生产线涉及 59 个工作站、每天超过 200 名人员、10 种具有独特变体的发动机类型、不同的技术系统,并且必须与多种运营功能保持一致,因此必须制定全面而周到的战略。另一个目标是减少
特征尺寸的缩小、互连金属的进步以及对缺陷控制的日益严格的需求都表明,化学机械平面化 (CMP) 对于优化晶圆厂产量的重要性日益增加。每个芯片的更多层需要 CMP 才能达到平面度规格,并且必须将污染保持在最低限度。平面度和纯度是每层能否按预期执行的关键指标。表面异常和残留物可能会影响晶圆产量、设备性能和电子系统的长期可靠性。
摘要:这项研究的目的是在北部塞尔维亚省Vojvodina进行的,是为了分析表面和地下滴灌灌溉的影响(具有0.05和0.1 m的滴水横向放置深度对洋葱的产量和水生产率(Allium cepa l.,cepa l.,var‘HolandskiŽuti')。根据水平衡法计划进行灌溉。使用基于Hargreaves方程和作物系数(KC)的参考蒸散量(ET O)计算每日蒸散率。灌溉速率为30 mm,而季节中灌溉量的水量为150毫米。根据获得的结果,灌溉条件下的洋葱产量明显高于未灌溉(对照)条件下的洋葱产量。使用表面和地下灌溉获得的收益率差异是无显着的。在灌溉和未灌溉条件下用于蒸散的水的量分别为363毫米和220毫米。表面灌溉屈服响应因子(K Y)的值为0.62,而地下灌溉屈服响应因子(K Y)的值为0.61(0.05 m)和0.79(0.1 m)。因此,在区域气候条件下,从集合中生长的洋葱被证明对水应力敏感,并且可以在没有灌溉的情况下种植。灌溉用水效率(I WUE)的价值范围为3.55至4.97 kg m -3,而蒸散液的含水效率(ET WUE)的价值范围为3.72至5.22 kg m -3。使用0.1 m的滴水横向深度获得最高的洋葱产量,建议将其用于高产洋葱。
农业是印度经济的重要部门,在确保粮食安全方面发挥着至关重要的作用。印度是世界上少数几个使用陆基观测和空间技术定期更新以帮助农民的国家之一,这有助于提高农作物产量,并为实现可持续农业提供投入。这些技术有助于在粮食安全问题上做出明智的决定,合法仓储,及时提供农业信息。为了确保粮食安全,政府不时强调农业,并推出计划。最近推出了一些重大计划,以提高每滴农作物的产量,增加农作物,农作物保险,Rashtriya Krishi Vikas Yojna。小麦是印度种植面积第二大的粮食作物,仅次于大米,每天为数百万印度人提供食物。印度的小麦产量约占世界总产量的 8.7%。它是该国北部和西北部各邦特别重要的主粮。北方邦、旁遮普邦、哈里亚纳邦和中央邦是该国的主要小麦产区。哈里亚纳邦位于印度北部地区,以小麦产量和消费量巨大而闻名。该邦在全邦 250 万公顷的土地上种植了约 116.30 万吨净小麦。修订稿于 2020 年 2 月 5 日收到。
摘要:气候变化是许多国家粮食不安全的关键问题。它可能会破坏粮食的可用性,因为它可能导致农业产量的降低,并最终威胁着农民的生计和粮食安全。在印度尼西亚的背景下,作为主要农作物商品之一的帕迪种植也容易出现气候问题,例如洪水和干旱。据我们所知,研究气候变化对使用印度尼西亚全国范围调查的帕迪产量的影响仍然有限。因此,本研究旨在评估气候变化对印度尼西亚湿地和旱地稻田产量的影响。这样做,我们将物流回归应用于2021年印尼裁判调查结果。该调查是由印尼统计机构(BP)每年进行的,以获取与农民对气候变化对产量的影响有关的收益数据和信息。在将物流模型应用于50,619个湿地稻田样品和1,081种旱地稻田样品后,我们发现,由于气候变化而导致的稻田种植者更有可能在没有体验到的帕迪量下降的可能性更高的可能性比那些未能经历的人更高,而湿地比湿地高2.23倍,而湿地更高,而湿地更高,而干paddy和1.77乘以1.77乘以1.77乘以1.7的77乘坐1.7码。此外,还发现有害生物攻击强度和水功能不全的倾斜度会显着影响稻田的降低。此外,基于农民群体之间的内核密度分布,我们的发现指出,受气候问题影响的农民的产量,遭受害虫攻击的增加以及面对水短缺的人,在相反群体的左侧,这意味着他们明显低于未受影响的人。得出结论,这一发现证实,气候变化,害虫攻击和水不足的水在印度尼西亚湿地和旱地稻谷生产中起降低产量的因素而起作用不可忽略。因此,缓解气候变化影响,更好的害虫控制策略以及稻田种植中的水管理改善对于维持稻田生产的可持续性至关重要。
政府间气候变化工作组II第六次评估报告指出,尽管总体农业生产率有所提高,但在过去的50年中,气候变化在全球范围内降低了这种增长(中等信心)。该结论基于气候影响归因,该过程评估了多个因果因素对观察到的变化或事件的相对贡献,并评估信心。证据表明,气候变化已经对农作物产量的增长产生负面影响,强调了在变暖下投射未来产量趋势并评估产量稳定性的变化的必要性。本演讲将介绍在Naro进行的气候影响归因和产量预测方面的最新进展,这两者对于提供科学基础以增强全球农业食品系统对气候变化的弹性至关重要。
最常见的,全球接受的工具,用于衡量产品水平的全球变暖潜力以及其他环境影响是环境生命周期评估(LCAS)。LCA提供一组全面的影响类别。本指南涉及“气候变化”生命周期影响类别。它指定了从最常见的镍产品的生产过程中量化和传达GHG排放的原理,需求和方法,以及其产品和前体的摇篮到岩层的碳足迹(例如,来自矿石中的镍矿物,镍浓缩物中的镍浓缩物中的镍型矿物质中的矿物质矿物质,镍含量,镍的矿物质中的镍含量,镍含量,镍制成,尼克矿物质,尼克矿物质,尼克型矿石矿物质,这些矿物质是尼克式的尼克矿物质,这些尼克矿物质是尼克的尼克和尼克矿物质,这些尼克矿物质是尼克的尼克矿物质,这些矿石是尼克的矿物质,这些矿物质是在尼克的矿石中的矿石矿床。以及硅铁矿和镍生铁的生产)。