摘要 尽管检测蛋白质合成的方法取得了进展,但目前还无法测量整个脊椎动物大脑中的内源性蛋白质合成水平。我们开发了一种转基因斑马鱼系,可以对整个动物的新生蛋白质进行细胞类型特异性标记和成像。通过在斑马鱼 MetRS 结合口袋 (MetRS-L270G) 中用甘氨酸替换亮氨酸,我们能够在蛋白质合成过程中以细胞类型特异性的方式掺入含叠氮化物的非典型氨基酸叠氮亮氨酸 (ANL)。然后通过“点击化学”标记新合成的蛋白质。使用 Gal4-UAS-ELAV3 系在神经元中表达 MetRS-L270G,我们测量了整个神经系统的蛋白质合成强度。我们可视化了内源性蛋白质合成,并证明癫痫发作引起的神经活动会导致神经元的翻译水平增强。该方法可以以细胞类型特异性的方式在单细胞分辨率下对体内内源蛋白质合成进行稳健分析。
富含亮氨酸的重复含量8a(LRRC8A)是体积调节的阴离子通道(VRAC)的关键组成部分,它影响了各种免疫细胞中必不可少的稳态过程。这些过程包括细胞体积和膜电位的调节,以及用作抗癌药物的有机剂和免疫刺激因子的促进。因此,了解LRRC8A的结构 - 功能关系,探索其在免疫中的生理作用,评估其在治疗疾病中的功效,并推进调节其活性的化合物的发展是重要的研究领域。本综述强调了LRRC8A的新兴领域,概述了其结构和功能,并总结了其在免疫细胞发育中的作用以及免疫细胞介导的抗病毒和抗肿瘤作用。此外,它探讨了LRRC8A作为免疫治疗目标的潜力,从而提供了解决持续挑战和未来研究方向的见解。
抽象引入低血糖是为1型糖尿病患者实现推荐血糖靶标的主要限制因素。暴露于复发性低血糖会导致对低血糖的荷尔蒙反调节和症状反应。有限的有关反复转化低血糖的代谢适应性数据有限。这项研究检查了对低血糖症的急性代谢反应以及先决性低血糖对1型糖尿病中这些反应的影响。研究设计和方法二十一名门诊患者患有1型糖尿病,患有正常或受损的低血糖意识参与了一项研究,该研究通过高胰岛素葡萄糖钳连续2天评估了对低血糖的反应。参与者在高胰岛素葡萄糖夹期间经历了一段正常血糖和低血糖期。血浆样品在正常血糖期间以及降血糖时期的开始和结束时采集。对等离子体样品的代谢组分析是使用综合二维气相色谱法进行了飞行时间质谱。总共研究了68个代谢产物。在第1天,分支链氨基酸的浓度,亮氨酸(P = 3.8×10 -3)和异亮氨酸(P = 2.2×10 -3),在低血糖期间降低。在低血糖期间,第2天,五种氨基酸(包括亮氨酸和异亮氨酸)显着降低,两种脂肪酸(四核酸和油酸)显着增加(p <0.05)。在1型糖尿病患者中得出结论,低血糖的一集降低了亮氨酸和异亮氨酸浓度。尽管在第2天对低血糖的反应反应更多,但在2天之间,单个代谢产物的反应在统计学上没有统计学意义。先前的低血糖导致五种氨基酸的降低,并增加了两种脂肪酸的浓度,这表明两种低血糖发作之间发生了变化,这可能表明可能适应。但是,需要更多的研究来全面了解这些改变的后果。试用注册号NCT01337362。
LRRK2,富含亮氨酸重复激酶 2;PD,帕金森病 KO,基因敲除;DQ-BSA,染料淬灭牛血清白蛋白 a. Dehey 等人,2013 年。帕金森病中的溶酶体损伤;b. R. Wallings 等人,2019 年;c. Henry 等人,2015 年 2023 年 Keystone 峰会上展示的数据:自噬和神经退行性疾病;图片:Marwaha 和 Sharma,Bio-protocol,2017 年
大麦 Mla 基因座含有功能多样化的基因,这些基因编码细胞内核苷酸结合的富含亮氨酸重复受体 (NLR),并赋予针对活体营养和半活体营养真菌病原体的菌株特异性免疫力。在本研究中,我们分离了一个大麦基因 Scs6 ,它是 Mla 基因的等位基因变体,但赋予对死体营养真菌 Bipolaris sorokiniana 分离株 ND90Pr (Bs ND90Pr) 的敏感性。我们生成了 Scs6 转基因大麦品系,并表明 Scs6 足以赋予天然缺乏受体的大麦基因型对 Bs ND90Pr 的敏感性。 Scs6 编码的 NLR(SCS6)被 Bs ND90Pr 产生的非核糖体肽(NRP)效应物激活,从而诱导大麦和本氏烟细胞死亡。MLA 和 SCS6 之间的域交换表明,SCS6 亮氨酸富集重复域是 NRP 效应物激活受体的特异性决定因素。Scs6 在野生和驯化大麦种群中均有保留。我们的系统发育分析表明 Scs6 是大麦特有的创新。我们推断 SCS6 是一种真正的免疫受体,很可能被 Bs ND90Pr 的非核糖体肽效应物直接激活,从而导致大麦易患疾病。我们的研究为未来开发不易受死体营养病原体修饰的作物合成 NLR 受体奠定了基础。
表明,“ poly-u刺激了许多其他许多其他氨基酸纳入蛋白质,例如亮氨酸,异亮氨酸,苏胺,苏氨酸,精氨酸,精氨酸,组氨酸,赖氨酸,丝氨酸,色氨酸和脯氨酸””由poly-u刺激,也不知道为什么马特塞伊(Matthaei)和尼伦贝格(Nirenberg与苯丙氨酸相对应的聚-U刺激”意味着“总4个碱基的特异性”仅对应“总4种4种氨基酸”,而不是“总共20种氨基酸”。“特殊性”的概念是一个理论上的错误)。
设计酶具有基础和技术意义。实验定向进化仍然有很大的局限性,计算方法是一条补充途径。设计的酶应满足多个标准:稳定性、底物结合、过渡态结合。这种多目标设计在计算上具有挑战性。最近的两项研究使用自适应重要性抽样蒙特卡罗重新设计蛋白质以进行配体结合。通过首先平坦化载脂蛋白的能量景观,他们获得了结合状态的正设计和非结合状态的负设计。我们现在已将该方法扩展到设计一种酶以进行特定的过渡态结合,即其催化能力。我们考虑了甲硫氨酰-tRNA 合成酶 (MetRS),它将甲硫氨酸 (Met) 附着到其同源 tRNA 上,从而建立密码子身份。此前,MetRS 和其他合成酶已通过实验定向进化重新设计,以接受非规范氨基酸作为底物,从而导致遗传密码扩展。在这里,我们通过计算重新设计了 MetRS,使其能够结合多种配体:Met 类似物叠氮亮氨酸、甲硫氨酰腺苷酸 (MetAMP) 以及形成 MetAMP 生成过渡态的活化配体。通过设计计算恢复了已知具有叠氮亮氨酸活性的酶突变体,并对预测结合 MetAMP 的 17 种突变体进行了实验表征,发现它们均具有活性。预测具有低活化自由能的突变体在 MetAMP 生成中被发现具有活性,并且预测的反应速率与实验值非常吻合。我们建议本方法应成为计算酶设计的范例。
核苷酸结合亮氨酸重复(NLR)型的免疫受体构成了动植物的基本元素和动物先天免疫系统(表1)。动物NLR响应并介导与病原体或危险相关的分子模式(PAMP或DAMPS)的相互作用[1]。在植物中,病原体识别的任务被分配在细胞内NLR和细胞表面模式识别受体(PRR)之间。虽然植物NLR会经过分泌的病原体效应子或其在宿主细胞中的活性,但PRR识别PAMP [2]。动物和植物NLR在核心核定核结合和低聚域(NOD)和富含亮氨酸的重复(LRR)域内具有相似的多域结构。但是,在C和N末端附件域上存在实质性多样性[3]。在植物中,NLR基于其在N末端的结构域组成及其在免疫反应中的功能进行分类。nlr携带盘绕线圈(CNL)或Toll/ interuekin 1受体(TIR)型域(TNLS)可以通过感知效应器充当传感器(TNLS),而CNLS的子集(HNLRS)的子孔(HNLRS)的子集(HNLRS)均具有下降症状,而demnls n imply nimns imply nimn imman imman from imman imman imply imply imman impls impls impls imman imman [ - 7]。在动物NLR中,N末端结构域属于死亡折叠的超家族,主要包括吡啶和卡域[8](图1)。在动物中,NLR的N末端结构域通常具有卡片或吡啶结构域。在识别潮湿或弹药的识别后,动物NLR核定成杂体炎性体复合物。例如,含吡啶的NLRP3炎症体为
植物性抗病性是农业的基础,维护作物健康和生产力。然而,大多数植物性抗病性蛋白(包括NLR)(包括NLR(核苷酸结合,富含亮氨酸的重复))免疫受体会出现重大挑战,在28摄氏度以上的温度下显示出降低的有效性。这种温度敏感性具有关键的影响,使农作物更容易受到疾病和害虫的影响,尤其是在增加全球温度和气候变化的背景下。尽管其重要性,但这种温度敏感性的根本原因仍然很少理解。该项目旨在通过研究暴露于高温的植物中NLR免疫受体的作用方式来解决这一知识差距。