NOD 样受体家族含吡啶结构域 3 (NLRP3) 炎症小体是一种寡聚复合物,可响应病原体感染的外源信号和非微生物来源的内源性危险信号而组装。当 NLRP3 炎症小体组装激活 caspase-1 时,它会促进炎症细胞因子白细胞介素-1B 和 IL-18 的成熟和释放。NLRP3 炎症小体的异常激活与各种疾病有关,包括慢性炎症、代谢和心血管疾病。NLRP3 炎症小体可以通过几种主要机制激活,包括 K + 外排、溶酶体损伤和线粒体活性氧的产生。有趣的是,代谢危险信号会激活 NLRP3 炎症小体以诱发代谢疾病。 NLRP3 包含三个关键结构域:N 端吡啶结构域、中央核苷酸结合结构域和 C 端富含亮氨酸重复结构域。蛋白质-蛋白质相互作用充当“踏板或刹车”,控制 NLRP3 炎症小体的激活。在这篇综述中,我们介绍了代谢危险信号诱导后或通过与 NLRP3 的蛋白质-蛋白质相互作用(可能发生在代谢疾病中)激活 NLRP3 炎症小体的潜在机制。了解这些机制将有助于开发治疗 NLRP3 相关代谢疾病的特定抑制剂。
植物释放在土壤原代和继发代谢产物中,这些代谢物通过其营养作用或抗菌活性来塑造菌群的结构。植物防御微生物还包括物理屏障,例如表皮,这些障碍物可以防止被侵略者无法造成的侵略者的感染来破坏它们。不同的感知系统允许植物检测入侵[6]。在其中,植物膜模式识别受体(PRR)有感觉保守的微生物相关分子模式(MAMP)或通常是细胞外的内源性植物分子。对MAMP的敏感性最近被提出是通过伤害引起的[7]。此外,胞质核苷酸结合亮氨酸重复(NLR)受体,感知的植物细胞内病原体效应子。这种效应子识别触发了与局部受控细胞死亡有关的强烈防御反应的发展,这些反应可能导致效应子触发免疫力(ETI)。植物细胞对病原体的感知会导致产生活性氧(ROS),抗菌化合物的合成,防御相关基因的转录和防御激素的产生。后者将远离感知部位的植物防御反应,以激活诱导的全身电阻(ISR)[8]。通常,接触越亲密,国防反应就越强。
• 医师、高级执业医师 (NP、CNS 或 PA) 或注册营养师开具治疗方案;并且 • 病情为慢性,预计会持续一段未确定或长期的时间;并且 • 通过饮食调整无法获得充足的营养;并且 • 使用的配方是针对特定病症专门配制的医疗食品;并且 • 个人患有以下病症之一:o 先天性代谢缺陷[例如苯丙酮尿症 (PKU)、枫糖尿病、同型胱氨酸尿症、甲基丙二酸血症、丙酸血症、异戊酸血症和其他亮氨酸代谢紊乱;戊二酸尿症 I 型和酪氨酸血症 I 型和 II 型;以及尿素循环障碍];或 o 年龄小于 24 个月的个体患有慢性肾病 (CKD) 2 至 5 期(或接受透析);或 o 克罗恩病;或 o 严重吸收不良综合症(例如囊性纤维化、短肠综合症或肠衰竭);或 o 营养不良或个人将营养不良或患有严重疾病,例如身体残疾、智力残疾或死亡(如果不进行营养治疗);或 o 严重食物过敏,包括嗜酸性食管炎和其他形式的嗜酸性胃肠道疾病,如果不及时治疗,将导致危及生命的过敏反应、营养不良或死亡(轻度和中度食物过敏或食物不耐症通常可以用食品商店和药店中现成的配方奶粉或精心选择食物来治疗;用于治疗此类病症的配方奶粉不被认为是医学上必要的);或 o 胃食管反流伴有发育不良 注意:有关承保限制和除外责任的更多信息,请参阅福利注意事项部分。定义 请检查取代以下定义的联邦、州或合同定义。 先天性代谢错误:先天性代谢错误是一组导致代谢途径受阻并导致临床严重后果的疾病。例子包括:苯丙酮尿症 (PKU)、枫糖尿病、同型胱氨酸尿症、甲基丙二酸血症、丙酸血症、异戊酸血症和其他亮氨酸代谢障碍;I 型戊二酸尿症和 I 型和 II 型酪氨酸血症;以及尿素循环障碍(美国国家人类基因组研究所网站,2013 年)。 智力障碍:智力障碍 (ID) 是一种神经发育障碍,其特征是智力功能和适应性功能均存在缺陷,其发病时间为发育期(Purugganan,2018 年)。医疗食品:在医生监督下配制食用或肠内给药的食品,旨在根据公认的科学原理,针对有特殊营养需求的疾病或病症进行特定的饮食管理,经过医学评估确定。食品只有在满足以下条件时才可称为医疗食品:
Ryo Morimoto,医学博士,博士莫里莫托(Morimoto)发展生物学系(BOEHM LAB),MAX PLANCK免疫生物学和表观遗传学研究所日期和时间:2024年1月24日,星期三,10:30-11:30地点:药学毕业生,医学院毕业生,从10:30:30:30:药房,来自四楼的药房,药学研究生院,语言:日语联系人:Hori Shohei(Ext。) 24820)摘要:针对病原体的人类自卫系统由两个主要的武器组成:先天和适应性免疫组织化学。 与先天抗原受体(AGR)识别模式识别的组合以及淋巴细胞表达的自适应AGR的预期模式对于建立我们精心策划的自卫以及保持体内平衡是必不可少的。 值得注意的是,这种复杂的系统仅在脊椎动物物种中建立,而大多数无脊椎动物物种仅取决于先天的免疫反应。 为了了解我们“现代”系统的进化紧急和轨迹,我想引入在无知的脊椎动物(hagfishes and Lampreys)中发现的替代自适应免疫学,这是一个与颚式脊椎动物(从鲨鱼到人类)5亿年前分离的小姐妹群体。 虽然它们的替代系统具有适应性免疫学的体液和细胞臂,但AGR的分子实体基于富含亮氨酸的重复模块。 与我们的V(d)J重组通过RAG1/2活性相反,AGRS的组装是通过基于胞苷脱氨酶(CDA)功能的一系列基因转换步骤来实现的。Ryo Morimoto,医学博士,博士莫里莫托(Morimoto)发展生物学系(BOEHM LAB),MAX PLANCK免疫生物学和表观遗传学研究所日期和时间:2024年1月24日,星期三,10:30-11:30地点:药学毕业生,医学院毕业生,从10:30:30:30:药房,来自四楼的药房,药学研究生院,语言:日语联系人:Hori Shohei(Ext。24820)摘要:针对病原体的人类自卫系统由两个主要的武器组成:先天和适应性免疫组织化学。与先天抗原受体(AGR)识别模式识别的组合以及淋巴细胞表达的自适应AGR的预期模式对于建立我们精心策划的自卫以及保持体内平衡是必不可少的。值得注意的是,这种复杂的系统仅在脊椎动物物种中建立,而大多数无脊椎动物物种仅取决于先天的免疫反应。为了了解我们“现代”系统的进化紧急和轨迹,我想引入在无知的脊椎动物(hagfishes and Lampreys)中发现的替代自适应免疫学,这是一个与颚式脊椎动物(从鲨鱼到人类)5亿年前分离的小姐妹群体。虽然它们的替代系统具有适应性免疫学的体液和细胞臂,但AGR的分子实体基于富含亮氨酸的重复模块。与我们的V(d)J重组通过RAG1/2活性相反,AGRS的组装是通过基于胞苷脱氨酶(CDA)功能的一系列基因转换步骤来实现的。
在1940年代和1950年代在北达科他州法戈的北达科他州农业部工作时,哈罗德·H·弗洛尔(Harold H.他的“基因 - 基因”遗产在现代植物病理学深处,并继续为植物免疫识别和信号传导的分子模型提供信息。在这篇综述中,我们讨论了最新的生物化学见解,以源自核苷酸结合结构域/富含亮氨酸的重复(NLR)受体赋予的植物免疫,这些核苷酸结合结构域(NLR)受体是自然界中主要基因的基因抗性决定因素和cul cultated作物。对病原体活化的NLR低聚物(抗性体)的结构和生化分析揭示了不同的NLR亚型如何以各种方式收敛于钙(Ca 2 +)signaLing,以促进病原体免疫和宿主细胞死亡。尤其是惊人的是鉴定基于核苷酸的signals通过植物Toll-Interleukin 1 Receptor(TIR)域NLR生成的酶。这些小分子是TIR产生的循环和非丝状裂解信号的新兴家族的一部分,该家族在细菌,哺乳动物和植物中引导免疫和细胞死亡反应。对植物NLR激活和信号传导的遗传,分子和生化理解的组合为抗击农作物的疾病提供了令人兴奋的新机会。
氨基酰基-TRNA和GTP结合的翻译伸长因子EF-TU识别核糖体的A位点密码子取决于多肽(P)和出口(E)密码子位点中存在的密码子和TRNA物种。为了了解密码子环境如何影响tRNA结合的EF-TU识别密码子识别的效率,开发了一个遗传系统,可以通过慢速翻译密码子组合选择快速翻译。选择通过慢速翻译的UCA-UAC对,两侧是Histi Dine密码子,从而在必需的TRNA Leuz的D-STEM中分离了A25G碱基取代突变体,该突变体识别UUA和UUG亮氨酸密码子。Leuz(A25G)替换允许通过包括UCA密码子在内的所有密码子对进行更快的翻译。插入。这项工作是根据trpt tRNA中的Hirsh UGA非理性抑制剂G24a突变所做的,它提供了遗传证据,即通过伸长因子TU进行的GTP后水解校对校验拟合步骤可以通过TRNA物种铰链区域中的结构相互作用来控制。我们的结果支持一个模型,在该模型中,mRNA翻译中的tRNA弯曲成分允许EF TU时间增强其区分cognate和接近同名mRNA密码子之间的tRNA相互作用的能力。
鳄梨 (Persea americana Mill.)是一种具有经济价值的植物,因为其果实脂肪酸含量高且风味独特。其脂肪酸含量,尤其是相对较高的不饱和脂肪酸含量,具有显著的健康益处。我们在此展示了西印度鳄梨的端粒到端粒无缝基因组组装 (841.6 Mb)。基因组包含 40 629 个预测的蛋白质编码基因。重复序列占基因组的 57.9%。值得注意的是,所有端粒、着丝粒和核仁组织区都包含在此基因组中。通过荧光原位杂交观察到这三个区域的片段。我们鉴定出 376 个潜在的抗病性相关核苷酸结合亮氨酸富集重复基因。这些基因通常聚集在染色体上,可能来自基因重复事件。五个 NLR 基因(Pa11g0262、Pa02g4855、Pa07g3139、Pa07g0383 和 Pa02g3196)在叶、茎和果实中高度表达,表明它们可能参与鳄梨在多种组织中的疾病反应。我们还鉴定出 128 个与脂肪酸生物合成相关的基因,并分析了它们在叶、茎和果实中的表达模式。Pa02g0113 编码 11 种介导 C18 不饱和脂肪酸合成的硬脂酰酰基载体蛋白去饱和酶之一,在叶子中的表达量高于在茎和果实中的表达量。这些发现提供了宝贵的见解,增强了我们对鳄梨脂肪酸生物合成的理解。
摘要浮游植物是水生微生物群落的重要组成部分,浮游植物和细菌之间的代谢耦合决定了溶解有机碳 (DOC) 的命运。然而,初级生产力对细菌活动和群落组成的影响仍然很大程度上未知,例如,好氧不产氧光养 (AAP) 细菌利用浮游植物衍生的 DOC 和光作为能量来源。在这里,我们研究了自然淡水群落中初级生产力的减少如何影响细菌群落组成及其活性,主要关注 AAP 细菌。当光合作用因光系统 II 的直接抑制而降低时,细菌呼吸速率最低,而在没有光合作用抑制的环境光条件下细菌呼吸速率最高,这表明它受到碳可用性的限制。然而,细菌对亮氨酸和葡萄糖的吸收率不受影响,这表明当低初级生产力限制 DOC 可用性时,提高细菌生长效率(例如由于光异养)有助于维持整体细菌产量。细菌群落组成与光强度紧密相关,主要是由于光依赖性 AAP 细菌的相对丰度增加。这一观点表明,细菌群落组成的变化不一定反映在细菌生产或生长的变化中,反之亦然。此外,我们首次证明光可以直接影响细菌群落组成,这是浮游植物-细菌相互作用研究中被忽视的一个主题。
图2:X射线晶体学通过X射线晶体屏幕。(a)TRF1 TRFH单体的卡通表示,其1286 PANDDA事件被叠加为蓝色球体。每个循环数代表pandda配体结合位点。TIN2 TBM结合位点,站点6,以绿色突出显示。(b)19精制和叠加的TRF1 TRFH结构的卡通表示,其命中片段结合在TIN2 TBM结合位点中。(c)与B中相同的结构,但没有结合的片段命中,显示了与片段结合的四个关键残基的相对位置(R102,E106,Q127,R131)。(d)TRF1 TRFH -TIN2 TBM晶体结构(PDB 3BQO)13的卡通表示,其中四个残基与碎片结合在一起,显示为蓝色棒,而TIN2 TBM显示为洋红色棒。(e)TRF1 TRFH的R131与命中片段的酰胺组之间的H-键的示例(3)。(f)命中片段(6)的示例,其中一个halide组埋在TRF1 TRFH的亮氨酸袋中,用TIN2 TBM肽(PDB 3BQO)13叠加为卡通和L260。(g)TRF1 TRFH的R131与命中片段的芳基(13)之间的阳离子-PI相互作用的示例。(H)Xchem的晶体结构命中片段5与TRF1 TRFH结合,相邻的不对称单元以灰色显示。
图:图1。PMSU2DR-02 T-DNA的线性图。 图2。 A。农杆菌根源菌株Arport1中PMSU2DR-02的圆形图。 B. tumefasciens菌株ATJGT105中PMSU2DR-02的圆形图。 图3。 PMSU2DR-02 T-DNA插入物的序列。 表列表:表1。 基因供体生物的分类分类表2。 pMSU2DR-02缩写和定义的DNA插入物的遗传元素:ARPORT1:含有gaantry基因在毒力质粒中堆叠所需的遗传成分的根状腺根源菌株。 直接用于植物转化。 cc-nb-lrr:N末端盘绕圈(CC)结构域,核苷酸结合位点(NB)和富含亮氨酸的重复序列(LRRS)EHA105:EHA105 tumefaciens菌株对土豆和其他植物的转基因作用有用。 gaantry:使用重组酶技术HS中的核酸转移基因组装HS:高度敏感的反应JGT105:Tumefaciens JGT105 Gaantry菌株,该菌株是tumefaciens eha105的衍生物,含有基因组成的群体。 直接用于植物转化。 LB: Left Border MOA: Mechanism of Action MSU: Michigan State University NCBI: National Center for Biotechnology Information NPTII: Neomycin phosphotransferase II ONT: Oxford Nanopore Technology ORF: Open Reading Frame PCR: Polymerase Chain Reaction PLRV: Potato Leaf Roll Virus PVY: Potato Virus Y R genes: Resistance genes RB: Right Border RSR: Regulatory Status Review T-DNA:转移DNAPMSU2DR-02 T-DNA的线性图。图2。A。农杆菌根源菌株Arport1中PMSU2DR-02的圆形图。B. tumefasciens菌株ATJGT105中PMSU2DR-02的圆形图。图3。PMSU2DR-02 T-DNA插入物的序列。表列表:表1。基因供体生物的分类分类表2。pMSU2DR-02缩写和定义的DNA插入物的遗传元素:ARPORT1:含有gaantry基因在毒力质粒中堆叠所需的遗传成分的根状腺根源菌株。直接用于植物转化。cc-nb-lrr:N末端盘绕圈(CC)结构域,核苷酸结合位点(NB)和富含亮氨酸的重复序列(LRRS)EHA105:EHA105 tumefaciens菌株对土豆和其他植物的转基因作用有用。gaantry:使用重组酶技术HS中的核酸转移基因组装HS:高度敏感的反应JGT105:Tumefaciens JGT105 Gaantry菌株,该菌株是tumefaciens eha105的衍生物,含有基因组成的群体。直接用于植物转化。LB: Left Border MOA: Mechanism of Action MSU: Michigan State University NCBI: National Center for Biotechnology Information NPTII: Neomycin phosphotransferase II ONT: Oxford Nanopore Technology ORF: Open Reading Frame PCR: Polymerase Chain Reaction PLRV: Potato Leaf Roll Virus PVY: Potato Virus Y R genes: Resistance genes RB: Right Border RSR: Regulatory Status Review T-DNA:转移DNA