摘要:通常认为开放壳分子石墨烯片段的反应被认为是不希望的分解过程,因为它们导致诸如π-磁性等所需特征的丧失。氧化二聚二聚体表明,这些转化是通过在单个步骤中形成多个键和环制造复杂结构的合成结构的希望。在这里,我们探讨了使用Phena-lenyyl的这种“不希望”反应来构建应变并提供非平面多环芳烃的可行性。为此,我们设计并合成了一个双烯基单元通过双苯基骨架链接的Biradical系统。设计促进了分子内级联反应对螺旋扭曲的鞍形产物,其中一个反应中的关键转换(环锁和环形融合)在一个反应中。通过单晶X射线衍射分析证实了最终的绿吡就产物的负曲率,该植物诱导的曲率通过分辨率通过分辨率的映异构体验证,该螺旋扭转验证了螺旋扭曲,这些向映异构体显示圆形极化的发光和高构型稳定性。
抽象机器人在AI中具有特殊的位置,因为机器人与现实世界相连,并且机器人越来越多地出现在人类的日常环境中,从家里到工业。除了案例外,机器人有望完全取代它们,人类将在很大程度上受益于与此类机器人的实际互动。不仅对于像机器人一样的复杂互动场景,在团队中充当指南,同伴或成员,而且还适用于更具预定义的功能,例如人类或商品的自主运输。越来越多的机器人需要合适的接口才能与人类互动,以使人感到舒适,这考虑了对采取行动的一定透明度的需求。本文描述了以人为中心的机器人技术研发(包括口头和非语言互动,彼此了解和学习)以及如果机器人将在我们的日常环境中包括在内,影响人类生活和社会,必须处理的道德问题。
(过度的)酒精和其他成瘾性物质通常被概念化为自我控制低的问题(即人们无法抑制不必要的冲动)。根据这种观点,人们喝酒是因为他们无法抗拒。在本研究中,我们从不同的角度解决了这一点,并测试了饮酒是否可能也是享乐能力低的问题(即人们通常由于思想造成的,人们无法体验愉悦和放松)。根据这种观点,人们喝酒是因为它可以帮助他们享受或应对负面的想法或情感。在两项有害饮酒风险的个体之间的两项研究中(例如,审计<7),我们一直发现特质享乐的能力与酒精的征服无关,但与应对动机有负相关(饮酒以应对负面的思想和感受;研究1:n = 348;研究2:研究2:n = 302,预先确定)。研究2中的探索性分析(在COVID-19大流行期间进行)还表明,享乐性享乐的人低(但不是很高)的人会响应压力而喝更多的酒精。我们的发现与人们的饮酒动机和行为不仅是自我控制不良的问题,而且还具有低特质享乐能力的问题一致。他们符合预防和治疗研究方面的新方向,该研究探讨了帮助人们寻求和品尝与非药物相关的增强剂的享乐主义体验(例如,从事休闲活动)。
在美国历史上担任参议院印度事务委员会(SCIA)主席,参议员布莱恩·沙茨(Brian Schatz)(D-HI)带领参议院民主党人在美国历史上获得了超过450亿美元的专用资金,这是美国历史上最多的社区 - 并在其领导层获得了26个部落特定的法案。 在四年中,委员会通过《美国救援计划法》(ARPA)在包括医疗保健,住房,教育,语言,基础设施和公共安全在内的关键领域进行了关键投资(P.L. 117-2),两党基础设施法(BIL)(P.L. 117-58),《降低通货膨胀法》(IRA)(P.L. 117-169)和年度拨款。在美国历史上担任参议院印度事务委员会(SCIA)主席,参议员布莱恩·沙茨(Brian Schatz)(D-HI)带领参议院民主党人在美国历史上获得了超过450亿美元的专用资金,这是美国历史上最多的社区 - 并在其领导层获得了26个部落特定的法案。在四年中,委员会通过《美国救援计划法》(ARPA)在包括医疗保健,住房,教育,语言,基础设施和公共安全在内的关键领域进行了关键投资(P.L.117-2),两党基础设施法(BIL)(P.L.117-58),《降低通货膨胀法》(IRA)(P.L.117-169)和年度拨款。
人为的全球气候变化及其对世界各地生态系统和社区的破坏性影响是广泛的科学共识的主题。心理因素在缓解和适应气候危机中的作用一直在社会和行为研究领域内外受到研究人员和从业者的关注。虽然与缓解气候变化有关的核心任务(减少CO 2发出,保护生物多样性以及在农业和行业中引入可持续解决方案)却基于自然科学和技术,但它们的广泛和及时实施取决于人类因素。因此,除了基础设施的系统变化,规则和法律的系统变化外,有效的气候行动还依赖于可持续的社会规范和态度,在社区层面上,亲环境行为的改变,教育和支持以及基于知识,价值观和表情符号的政治参与。心理学作为思想和行为的研究在气候变化的研究领域中起着作用,在社会生态环境中,个人行为可以做出重大贡献。心理专业知识还可以在不同水平的影响力中缓解和适应气候危机。
摘要 - 本文探讨了AI-power聊天机器人应对高中学生面临的心理健康挑战的潜力。随着青少年焦虑,抑郁和压力的增加,传统的心理健康支持系统通常由于污名化,有限的可及性和资源限制而缺乏。这项研究强调了自然语言处理的进步(NLP)如何使聊天机器人能够提供可扩展的24/7,非判断性支持,适用于个人需求。本文研究了将这些工具集成到学校课程中的策略,包括针对文化和年龄特定环境的定制,与教育者和心理健康专业人员的合作以及解决数据隐私等道德问题。通过对案例研究的分析,发现表明聊天机器人可改善可及性,减少污名并促进早期干预措施,最终增强心理健康成果。结论强调需要采用多学科方法来确保这些工具的成功。它要求教育者,开发人员和心理健康从业人员之间的合作,以最大程度地影响他们在教育环境中的影响。本文强调了AI驱动的聊天机器人在为高中生创造一个无污名的环境方面的变革潜力。索引术语 - AI驱动的聊天机器人,青少年心理健康,自然语言处理,减少污名,早期干预,学校计划,数据隐私,心理健康可及性。
国际劳工组织以人为本的议程将所有人的需求、愿望和权利置于经济、社会和环境政策的核心。在企业层面,这种方法要求更广泛的员工代表性和参与度,这可能是生产力增长的有力因素。然而,以人为本的议程在工作场所层面的实施可能会受到企业人力资源管理 (HRM) 各个领域使用人工智能 (AI) 的挑战。虽然企业在许多人力资源管理领域都热情地拥抱人工智能和数字技术,但他们对此类创新如何影响劳动力的理解往往落后或不被视为优先事项。本文提供了有关何时何地应鼓励在人力资源管理中使用人工智能的指导,以及在哪些情况下它可能会导致比它解决的问题更多的问题。
一种新的学科综合体正在出现,其中基于人工智能的智能算法与以人为本的设计思维相结合,形成以人为本的人工智能 (HCAI)。这种学科综合体增加了技术赋予人类权力而不是取代人类的机会。过去,研究人员和开发人员专注于构建人工智能算法和系统,强调机器自主性和衡量算法性能。新的综合体重视人工智能,并通过提高用户体验设计的突出地位和衡量人类的表现,给予人类用户和其他利益相关者同等的关注。HCAI 系统的研究人员和开发人员重视有意义的人类控制,通过服务于权利、正义和尊严等人类价值观将人放在首位,从而支持自我效能、创造力、责任感和社会联系等目标。
全球卫生危机为人工智能 (AI) 解决方案的开发带来了前所未有的机遇。本文旨在通过实施以人为本的 AI 来帮助组织中的决策者,从而解决人工智能中的部分偏见。它依赖于两个设计科学研究 (DSR) 项目的结果:SCHOPPER 和 VRAILEXIA。这两个设计项目通过两个互补的阶段将以人为本的 AI 方法付诸实践:1) 第一个阶段安装了以人为本的知情设计流程,2) 第二个阶段实现了聚合 AI 和人类的使用架构。所提出的框架具有许多优势,例如允许将人类知识整合到 AI 的设计和训练中,为人类提供对其预测的可理解解释,并推动增强智能的出现,可以将算法转变为对人类决策错误的强大平衡,将人类转变为对 AI 偏见的平衡。
供应链的配置和运作与企业的成功息息相关,多年来一直是学术界和工业界关注的话题。许多供应链都高度优化,注重效率和利润,因为企业将全球化、低关税和稳定的贸易规则视为理所当然。然而,近年来,全球形势变得越来越不稳定,最近发生的几起事件暴露了全球供应链的脆弱性。特别是 COVID-19 大流行导致全球不同地区的工厂暂时关闭,影响了供应链。再加上中美贸易战、英国脱欧或苏伊士运河暂时堵塞等其他事件,这些中断成为严重威胁,导致不同产品短缺。更严格的准入规定导致交货时间更长、更不可预测,并破坏了库存不足的长距离供应链。目前,由于极端天气事件更频繁,以及由气候变化引起的新传染病爆发,情况似乎不会很快好转。